
Transforming Graphical Interfaces into

Auditory Interfaces for Blind Users

Elizabeth D. Mynatt

Xerox Palo Alto Research Center

ABSTRACT

While graphical interfaces have provided a host of advantages to the majority of

computer users, they have created a significant barrier to blind computer users. To meet

the needs of these users, a methodology for transforming graphical interfaces into

nonvisual interfaces has been developed. In this design, the salient components of

graphical interfaces are transformed into auditory interfaces. Based on a hierarchical

model of the graphical interface, the auditory interface utilizes auditory icons to convey

interface objects. Users navigate the interface by traversing its hierarchical structure. This

design results in a usable interface that meets the needs of blind users while providing

many of the benefits of graphical interfaces.

2

1. INTRODUCTION

2. BACKGROUND

2.1. The GUI Problem

2.2. Requirements for GUI Access by Blind Users

2.3. Evaluation of Screen Reader Interfaces

3. MODELING GRAPHICAL INTERFACES

3.1. Determining the Contents of the Interface Transformation

What are the objects?

What are attributes of the objects?

What are the affordances of the objects?

What are the relationships between objects?

What are the names of objects?

Completeness?

3.2. Modeling the GUI

Assessing Spatial Models

Assessing Hierarchical Models

Assessing Conversational Models

Choosing a Model

4. MERCATOR INTERFACE DESIGN

4.1. Conveying Auditory Objects

Conveying Object Identity

Conveying Object Characteristics

4.2. Navigation

Navigation Shortcuts

3

Auditory Preview

4.3. Manipulating the Interface and User Feedback

Selection

Pop-up Windows

Interacting with Text Objects

User Levels

5. ASSESSING MERCATOR’S INTERFACE

5.1. Measuring Performance with Mercator

Learning the Auditory Interface

Stages of Learning

Transitioning between the Graphical and Auditory Interfaces

5.2. Observations by Blind Users

Reactions to Nonspeech Auditory Cues

Reactions to Hierarchical Interface Structure

5.3. Meeting Goals for Screen Reader Design

6. FUTURE WORK

1. INTRODUCTION

The problem addressed by this research can be simply stated, “What kind of interface

would you design for a blind person using a graphical user interface?” The requirements

of blind users demand a general mechanism for transforming graphical interfaces into

nonvisual interfaces. Additionally, blind users would like to enjoy the benefits of

graphical user interfaces. The requirements of blind users coupled with the benefits of

4

graphical interfaces form a set of goals for the interface transformations. We will see that

commercial software for blind users fails to meet many of these goals. Specifically, the

reliance on a spatial model of the graphical interface impacts the usability of the resulting

nonvisual interface.

The first step in transforming graphical interfaces into nonvisual interfaces is determining

the contents of the transformation. What is being converted from the graphical modality

into the nonvisual modality? Graphical interfaces are composed of groups of interface

objects that are presented spatially on a two dimensional display. These objects are

characterized by a number of attributes that help convey their intended functionality. The

objects making up the graphical interface, their attributes and the relationships between

the objects comprise the contents of the interface transformation.

Next, it is necessary to model the contents of the transformation so that the model both

captures the critical characteristics of the graphical interfaces and provides the basis for an

intuitive nonvisual interface. Different models are possible. After comparing spatial,

hierarchical and conversational models, we argue for utilizing a hierarchical model

because it best captures the underlying structure of the graphical interface without

requiring application, domain-specific knowledge.

Given a hierarchical model of the graphical interface, the next step is designing the

nonvisual interface. In this design, we have focused on conveying the contents of the user

interface, supporting navigation, and providing controls for manipulating the interface.

By using auditory cues akin to sound effects heard in real world environments, we

attempt to provide the benefits of iconic representations. These auditory icons (see Gaver,

1988) convey the type of interface objects as well as attributes of the objects such as their

5

size, selection state, and spatial location. For example, a muffled, light switch sound

conveys a greyed-out toggle button.

Users move from object to object based on the hierarchical model of the interface.

Interruptability, navigation shortcuts, and previews help alleviate the potential tedium of

traversing a large structure. Auditory feedback also helps users perceive changes in the

interface based on their input or application events. For example, rising and falling

whistling sounds accompany the appearance and disappearance of pop-up windows.

Assessments of this design are based on over four years of feedback from blind computer

users as well as controlled experiments with sighted users. We conclude this paper by

evaluating this design against the goals that we outlined for interface transformations.

Although lacking in its ability to present information spatially, this design results in a

usable interface that provides many of the critical characteristics of graphical interfaces.

2. BACKGROUND

2.1 The GUI Problem

In the paper “The Graphical User Interface: Crisis, Danger and Opportunity,” Boyd et al.

(1990), summarized an overwhelming concern expressed by the blind community: a new

type of visual interface threatened to erase the progress made by the innovators of screen

reader software. Such software (as the name implies) could read the contents of a

computer screen, allowing blind computer users equal access to the tools used by their

sighted colleagues. Whereas character-based screens were easily accessible, new graphical

interfaces presented a host of technological challenges. The contents of the screen were

mere pixel values, the on or off “dots” which form the basis of any bit-mapped display.

6

The goal for screen reader providers was to develop new methods for bringing the

meaning of these picture-based interfaces to users who could not see them.

The crisis was imminent. Graphical user interfaces were quickly adopted by the sighted

community as a more intuitive interface. Ironically, these interfaces were deemed more

accessible by the sighted population because they seemed approachable for novice

computer users. The danger was tangible in the forms of lost jobs, barriers to education,

and the simple frustration of being left behind by the computer industry.

Much has changed since that article was published. Commercial screen reader interfaces

now exist for two of the three main graphical environments. But many blind users still do

not view graphical interfaces as a new opportunity. Screen readers designers, faced with

the task of translating a complex, visual interface into auditory or tactile output, have

attempted to create one-to-one translations of the spatially arranged graphical interfaces.

Blind users have responded with difficulties in using these visually-oriented interfaces.

The Mercator Project at Georgia Tech addressed two untouched areas of work in the

screen reader community. First, no one had designed a screen reader for X Window

applications, such as Motif applications used in research, business and educational

settings. Second, there was little work in alternate representations of graphical interfaces

that were not based on speech output and spatial organizations.

The implementation of Mercator is described in (Edwards, W.K. 1993, 1994, 1995). Briefly,

the system provides the infrastructure to monitor and model unmodified X applications

while they are running. A collection of “hooks”1 in the Xlib and Xt Intrinsics libraries of

the X Window System trap interesting events such as the creation of a push button or the

appearance of a window. The information gleaned from these hooks is transmitted to

7

Mercator which creates a model of the graphical interface based on the application’s

widget hierarchy. Mercator also provides facilities for creating interfaces to replace or

augment the graphical interface. Interface behavior can be specified in an interpreted

language supporting prototyping and end-user customization.

An underlying assumption in the design of Mercator interfaces is the dominant use of

auditory output. Researchers have experienced limited success with tactile devices with

the exception of braille output. Additionally, a significant portion of people who are blind

also suffer from diabetes which reduces their sensitivity to tactile stimuli (Humanware et

al. 1990). Nevertheless Mercator includes a tactile component as well. For example, since

speech synthesizers are notoriously bad at reading source code, Mercator provides a

Braille terminal as an alternate means for presenting textual information

2.2 Requirements for GUI Access by Blind Users

The requirements for the auditory interface are driven by the need for blind users to work

with their sighted colleagues employing the same graphical applications. Without

knowledge of the application domain, the screen reader system must transform the

contents of the graphical interface into a usable auditory interface. By monitoring the

execution of a graphical application, the screen reader creates a model of the application

interface and derives a complimentary auditory interface. The user’s interaction with the

auditory interface is forwarded to the graphical interface and the process continues as

shown in the following figure.

1. The “hooks” are now part of the standard X Windows System since X11R6. The protocol used to

transmit information trapped by the hooks to an external program is under consideration by

the X Consortium.

8

FIGURE 1 ABOUT HERE

The foremost critical requirement is transparent transformations of graphical interfaces.

Modifying individual applications does not address problems of providing access to a set

of graphical applications. A general mechanism for transforming any X Window

application is needed. The ideal scenario is that blind users running the screen reader on

their systems should be able to use any X application without needing to specially tailor

the application interfaces.

To address this need, Mercator automatically transforms text-based, X Windows

applications while they are running, providing an auditory interface. This requirement for

transparent transformations impacts the design in two critical ways. First, there is no

domain knowledge to inform the creation of the auditory interface. Mercator is unaware

of the functionality of the application, such as whether it is a word processor or electronic

mail tool, but is only aware of how the graphical interface is constructed. Second, this

transformation is done in “real-time”. There is no off-line processing or analysis of the

graphical interface.

An implicit requirement for screen reader systems is that they facilitate collaboration

between sighted and blind colleagues. Blind users do not work in isolation from their sighted

counterparts. Therefore it is imperative that blind and sighted users be able to

communicate about their use of application interfaces.

In addition to reinforcing the need for transparent access, this requirement constrains the

design of the auditory interface. While an auditory interface to an application may be

quite intuitive and usable, if it does not express interface concepts similar to the graphical

interface, it does not solve the collaboration need by the blind computer user. Ideally a

9

blind user should be able to ask a sighted user how to do something with an application

interface and be able to utilize directions expressed in terms of the graphical interface.

This ideal scenario is difficult to achieve, but the design goals of designing for

collaboration versus designing for intuitive auditory interaction conflict in interesting

ways.

Within the range of graphical interfaces, this work focuses on the transformation of text-

oriented graphical interfaces such as electronic mail programs, word processors and

spreadsheets. By choosing this area, we are focusing on interfaces in which text is the

primary object of interest and where text is manipulated through the use of graphical

controls. In contrast, applications such as drawing programs where graphics are the

primary objects of interest are not addressed in this work. This restriction is due to the

additional difficulty of representing pure graphical information in the auditory modality.

Nevertheless the chosen application set is sufficiently interesting since it represents

applications that are commonly used.

Expressed as a general requirement, an additional need by blind computer users is to

experience the benefits of graphical interfaces enjoyed by their sighted counterparts, such as

iconic representation and direct manipulation. Below, we present goals for screen reader

interface design based on the benefits of GUIs:

• Access to functionality

At a minimum, the user must be able to use the functions represented by the

graphical interface. For example, in a word processor where pull-down menus

support operations for loading and saving files, users would need an interface to

this functionality. Some software vendors maintain that their graphical applications

10

are accessible to blind users because they provide a separate command-line

interface that can be read by older screen readers. Simply providing access to the

same functionality likely breaks the goal of supporting collaboration between blind

and sighted users since they use a distinctly different interface.

• Iconic representations of interface objects

Graphical icons, from trashcans to push buttons, help the user assess the

capabilities of an interface by leveraging knowledge of the physical world. Visual

attributes of interface objects such as size and highlighting also convey information

to the user.

• Direct manipulation

Closely coupled with the benefit of iconic representation, is the benefit of direct

manipulation. According to Hutchins et al. (1986), this benefit is achieved when the

user is able to directly interact with objects of interest to the task at hand, and

output in the interface is expressed via these objects.

• Spatial arrangement

Graphical interfaces allow the user to organize information in a 2 1/2D space.

Contrast organizing a desktop by maintaining lists of objects and categories of lists.

Another benefit of spatial arrangement is that it can leverage knowledge of the

physical world. Sliders that support viewing portions of a document capitalize on

moving sheets of paper sideways and front-to-back in a stack.

• Constant presentation

A benefit of visual interfaces is that they exist in physical space that can be reviewed

over time. This advantage of the visual sensory system is capitalized in graphical

11

interfaces. These displays serve as a surrogate short-term memory for recalling the

contents of the user interfaces.

We will see that these benefits are ordered from easiest to hardest for a screen reader

system to provide. In the following section, we briefly evaluate screen reader systems that

allow blind users to interact with representations of graphical interfaces.

2.3 Evaluation of Screen Reader Interfaces

There are two general classes of commercial screen readers that provide auditory

interfaces for graphical interfaces. The first class is dominated by a product called

OutSpoken (1989). The primary characteristic of this class is that the structure of the

auditory interface is based primarily on the spatial layout of the graphical interface. Users

navigate the screen using the mouse or keyboard shortcuts. The interface uses synthesized

speech almost exclusively. At the basic level, the user moves the mouse cursor across the

screen, and when the cursor intersects a graphical object the speech synthesizer reads

information about that object. An auditory cue is used to convey moving across a window

boundary.

Since OutSpoken relies heavily on optical character recognition (OCR) algorithms that are

extended to recognize graphical icons, this interface does not group icons as one might

expect. Two examples of OutSpoken’s interface reveal its usability limitations.

In a grouping of controls, such as these in the following figure, the users must access the

controls in terms of their visual layout. For example to move from “Row” to “Selection”,

the user must move down twice. There is little information conveyed by this spatial

layout, but the arrangement was chosen because it fit well within the dialog box. The user

12

could as easily move to the right twice. This interaction style requires blind users to

memorize visual layouts that conveys little meaning about the interface.

FIGURE 2 ABOUT HERE

The conceptual model that underlies the OutSpoken interface is the arrangement of

information in a row-column format. This model was chosen because it is similar to

previous text-oriented screen reader interfaces. Because the OutSpoken interface imposes

little hierarchy (windows are the only grouping mechanism), moving through the objects

in the above dialog would result in this order of spoken output: Row, Insert, Column,

Delete, Selection and so on. Users are confused by this interaction since the semantic

groupings that are obvious in the visual interface are not conveyed in the auditory

interface

ScreenReader II by IBM, WindowBridge by SynthAVoice, and ProTalk by Hinter Joyce are

products that provide access to the Microsoft Windows environment. As representatives

of the second class of screen readers, these interfaces require the use of existing keyboard

shortcuts provided by the Windows environment. Like OutSpoken, these products use

only synthesized speech and braille output.

The reliance on the Windows keyboard shortcuts creates most of the usability problem

with these screen readers. First, while the shortcuts provide more structural information

than OutSpoken, they are designed to be augmented with the information in the visual

display.

A more troublesome problem is that the shortcuts only allow the user to navigate to

graphical objects that accept user input. Areas such as greyed out buttons and message

bars are “invisible.” In order to access read-only information, the user must define view

13

areas by a row-column position per application. The user can then create keyboard macros

to read the information at a particular view area. These view areas are defined in a

separate file or application profile, and this process requires the assistance of a sighted

person.

The following list highlights difficulties that blind users had when working with these

interfaces according to Edwards, A.D.N. (1989, 1991, 1992). This evaluation is primarily

based on informal observation as well as discussions with users and developers.

• Up, Down, Left or Right?

Users must understand the interface in terms of its spatial presentation. The

reliance on the visual layout seems to be consistently problematic for blind users.

Users describe their interactions with a graphical interface by first discussing the

contents and structure of the interface, later augmenting their description by

discussing the spatial layout. It appears that users are keeping two mental

representations of the user interface, one based on structural information which is

the primary model for the capabilities of the interface, and one based on spatial

information, which is required to use the screen reader interface.

• Dead Space, Occluded Space and Iconified Space

The blank space of the background, occluded portions of interfaces and desktop

icons (minimized application windows) are confusing since these concepts are

based on the limited visual display and do not map well to the limitless space of

auditory interfaces. One interesting observation is that sighted users iconify

application windows to de-clutter the visual display while blind users simply cycle

through a list of active applications. Blind users typically complained about “falling

14

in between objects.” Whereas the dead space in visual interfaces helps users to

identify individual objects, it is confusing for blind users who want to move from

object to object.

• Object Relationships

For a number of reasons, blind users have difficulty recognizing objects and

relationships between objects in the same way as their sighted counterparts. The

worst case is OutSpoken’s interface where the label for a graphical icon, for

example, a file folder, is treated as a separate object from the icon itself. Since users

are often unaware of bounding boxes and other visual notation used to group

objects, they do not perceive object groups.

• Invisible Spots

Since most of the screen-readers rely on keyboard shortcuts, portions of the

interface cannot be accessed by the blind user and are essentially “invisible.”

Keyboard shortcuts are designed for sighted users; therefore there is no need to

have a keystroke for portions of the screen that do not accept user input.

• Synthesized Speech Overload

Most screen readers rely on either speech or braille output. Many blind users report

being confused by the use of speech for interface information (“Menu Button”,

“Window”) and application information (“File”, “Edit”, “Microsoft Word”) even

when different voices are used.

15

• Visual Characteristics Not Conveyed

Despite a reliance on the spatial layout, most screen readers fail to convey a great

deal of visual information. For example, the relative size of an object, such as a

menu or text field, is not conveyed in any of the screen readers discussed here.

The design of these screen reader interfaces are based on a number of design decision on

how to model the graphical interface. For example, these interfaces often maintain the

overall spatial organization of the interface, but do not convey visual attributes such as

size or structural attributes used for grouping objects. The next section addresses these

design decisions:

• What are the contents of the interface transformation?

• What is the underlying model for the interface transformation?

3. MODELING GRAPHICAL INTERFACES

3.1 Determining the Contents of the Interface Transformation

To motivate creating a model of a graphical interface, we examine a typical graphical

interface as shown in the following figure. The question to be answered at this stage is:

“What are the characteristics and components of this interface that are critical to its

use?”

In contrast to the previous discussion on the advantages of graphical interfaces, during

this section we need to categorize information about graphical interfaces that will be

stored in our model.

FIGURE 3 ABOUT HERE

16

What are the objects?

A fundamental notion behind graphical interfaces is that the user directly interacts with

things: objects or interactors that can be manipulated by the user in a set number of ways.

In the example, there are a number of objects such as windows, radio buttons, push

buttons, scroll bars, editable text areas, and read-only text areas such as message bars.

These objects form the basis for how we conceptualize a graphical interface.

What are attributes of the objects?

Most interface objects are characterized by a number of visual attributes that help clarify

their use. For example, many interactors can be highlighted (often indicating a current

selection) and greyed out (indicating that the object is unavailable for use).

The relative sizes of different objects may be informative. In the screenshot, one of the text

areas is much smaller than the others. This size indicates the type of text presented in this

space, in this case, short diagnostic messages. Other size attributes are related to

collections of objects. For example, the four radio buttons take up less space than the

eighteen push buttons in the sample interface. Because sighted users quickly scan this

information, they internalize that the radio buttons represent a smaller set of choices.

Other attributes are related to the spatial distribution of objects. For example, the sample

interface is meant to be read from top to bottom, left to right, following Western reading

conventions.

What are the affordances of the objects?

Objects in graphical interfaces can be categorized by their basic functionality. Many

objects provide a means to group other objects. In this example, both windows and boxes

collect objects into meaningful groups.

17

Users interact with objects in graphical interfaces in a set of predetermined ways. For

example, a host of button objects support different forms of selection.

Text objects support the entering and manipulation of textual information, although the

behavior of a text object can be constrained to indicate information about its contents. For

example, the text in the first, large text object of the pictured interface, supports selecting a

line of text since those lines represent email message headers. Some text objects support

reading, but not editing of their contents.

What are the relationships between objects?

Another important question is how does the user perceive that objects are related to each

other. Commonly, relationships are expressed via grouping. For example, the four radio

buttons are not randomly scattered throughout the interface but are grouped together. In

general, hierarchical relationships among objects inform us about the structure of the

application interface. As already discussed, windows, boxes and white space convey

groups of related objects.

Another primary relationship is cause and effect. In the example, selecting the push

button “reply” causes the dialog box to be popped up. Selecting a message header causes

the message to be displayed. If the interface response time is short, the user will associate

these objects as having a cause-and-effect relationship.

What are the names of objects?

Although not visually depicted, many objects in the graphical interface have common

names associated with them such as window, push button, and scroll bar. Since sighted

and blind users will need to communicate with each other about application interfaces, it

is necessary to retain naming conventions.

18

Completeness?

Is our model of the graphical interface complete? Depending on how we represent the

model of the graphical interface with auditory cues, it may appear that we are discarding

information in the graphical presentation. For example, we may not attempt to present

objects at specific x,y location, but we may use the x,y coordinates to help determine the

order of objects in the auditory interface. Likewise, we may not convey the amount of

overlap between partially occluded windows, but we will likely support the notion of

focus in the auditory interface.

There will likely be information in the graphical interface not conveyed in the auditory

interface such as line width or color when these attributes do not convey information. The

difficulty is determining, given a generic transformation, when the visual attribute is not

meaningful.

Additionally, there are characteristics of the graphical interface that are difficult, if not

impossible, to convey in an auditory interface, such as a persistent overview of the

interface. How information about the graphical interface is utilized is determined by the

underlying representation of the interface. In the next section, we compare three potential

classes of models that could be used to represent the information about the graphical

interface. This model provides the basis for the auditory interface.

3.2 Modeling the GUI

The next step in the design process is determining a model for graphical user interfaces.

Since the model impacts both the user interface as well as the system design and

implementation, it is necessary for us to consider the following questions when

evaluating possible models:

19

• How well does this model capture important GUI characteristics?

• What kinds of auditory interfaces could be based on this model?

As an extreme example of a possible model, we could attempt to represent the GUI

interface with musical notation. Although it would be easy to create an auditory interface

based on musical notation, it would be quite difficult, if not impossible, to represent GUI

characteristics with musical notation.

During this discussion, we compare three types of potential conceptual models. These are:

• Spatial Models

The graphical interface is modeled as a 2 1/2 dimensional projection in space easily

capturing aspects of the GUI such as the spatial distribution of objects. This model

is primarily used by commercial screen readers.

• Hierarchical Models

The graphical interface is modeled as a hierarchical structure, such as a tree or

outline easily capturing parent-child grouping relationships. Most phone-based

auditory interfaces utilize hierarchical interfaces implemented with menus.

• Conversational Models

The graphical interface is modeled as a dialogue where the user can converse with

the auditory interfaces. Natural language understanding coupled with voice

recognition systems are used to implement these interfaces.

FIGURE 4 ABOUT HERE

20

Assessing Spatial Models

Using spatial models to represent graphical interfaces is attractive since graphical

interfaces are presented using a spatial metaphor. The sighted user is presented with a

spatially arranged picture of interface objects that can stack on top of each other in a 2 1/

2D fashion. Many of the advantages of graphical interfaces, discussed previously stem

from their static, spatial presentation. Obviously representing the graphical interface with

a spatial model is not difficult, so the remaining question is what type of auditory

interface could be based on this model.

The major difficulty with spatial models is that auditory interfaces are limited in their

ability to present information spatially. Since 3D spatial sound systems cannot be used to

produce a one-to-one mapping of the visual space to an auditory space, it would be

necessary to present an abstraction of the graphical display. Just as maps serve as

abstractions for physical space, the goal would be to create an auditory abstraction for the

graphical space. Although this approach is feasible and worth future investigation, the

analysis of existing screen readers points to two problems with this approach.

First, as discussed during the review of screen reader interfaces, blind users find it

difficult to work with spatially arranged user interfaces. Many users conceptualize the

interface based on its logical structure and then attempt to memorize the spatial

presentation. Although it is clear that blind people can successfully navigate physical

spaces such as their home, one user likened working with a graphical interface with

trying to navigate a large, unknown room where it is “easy to get lost and become

disoriented (Day, 1995).”

21

Second, although one could argue that existing screen reader interfaces have not provided

the right spatial abstraction for a graphical interface, finding such an abstraction is

difficult because graphical interfaces have been optimized for visual presentation. The

need to fit the graphical interface into a limited visual space results in spatial layouts that

are not informative, but are the result of conserving screen real estate. In a generic analysis

of an X Windows graphical interface, it is impossible to determine when spatial layouts are

informative. Although current screen reader interfaces have attempted to provide the

benefits of a spatial organization, their users more often are confused by spatial

arrangements that convey no meaning.

Assessing Hierarchical Models

Many auditory interfaces are based on hierarchical models (see Ly, 1993 & Schmandt,

1993). For example, interfaces for voice mail allow the user to navigate through a

hierarchy of choices for listening to and deleting messages. Hierarchical models are used

because they can abstractly represent groups. It is also relatively easy to navigate these

auditory interfaces using keypad or voice input, although the requisite path from one

object to another may be lengthy. Since hierarchical structures represent discrete, as

opposed to continuous, values, they are well suited for conveying discrete objects.

Given that there are previous examples of complex, hierarchical auditory interfaces, the

primary question is how well graphical interfaces can be modeled using a hierarchical

structure. A tree-structure representation of the graphical interface in Figure 3 is shown in

the following figure. The tree structure lends itself to representing the objects in their

interface, as well as the parent-child relationships between those objects. Cause-and-effect

relationships can be modeled as additional links in the structure. In the example, pushing

the reply button causes the pop-up dialogue to appear.

22

FIGURE 5 ABOUT HERE

A significant limitation of this model is that it does not capture visual attributes of the

graphical interface. Some representations of visual cues are possible. For instance, the

ordering of objects in the structure can be based on their spatial arrangement in the

graphical interface. Likewise the size of grouping objects, such as windows, is partially

represented as the number of children. Nevertheless, this model suffers from its inability

to explicitly represent all the visual characteristics of the graphical interface, These

characteristics can be stored as attributes of the objects in the hierarchical structure. The

auditory interface would be responsible for conveying these attributes, in addition to

conveying the underlying model.

Assessing Conversational Models

Another class of auditory interfaces commonly uses conversational dialogues as the basis

for the user interfaces. For example, both Stifelman’s Conversational VoiceNotes (1993)

and Yankelovich’s SpeechActs (1994, 1995) utilize voice recognition technology as the

primary means of input to an auditory interface. VoiceNotes provides an interface to a

hand-held notes organizer while SpeechActs provides an interface to desktop applications

such as email and calendar. Typical user input phrases are:

List notes for July 12th

New appointment with Jim Foley this Friday at 3pm

Both of these interfaces are replicating functionality that can be found in a graphical

interface. SpeechActs is actually a front-end for graphical desktop programs. Given that it

is possible to create useful auditory interfaces using conversational models, the remaining

23

question is how does this model work with our goal of modeling graphical user

interfaces. There are two problems with using these models for our task:

• Requires Domain Knowledge

The example input phrases above illustrate that these interfaces rely on

understanding the domain of the application interfaces. In our automatic analysis

of graphical interfaces, it is unlikely that we will obtain sufficient information to

build a domain-dependent dialogue.

• Interaction Significantly Different than Graphical Interface

Sighted users and blind users will not have the same building blocks for discussing

how to operate an interface since the conversational interface hides components of

the GUI such as menus and buttons.

Choosing a Model

We have based our representation of the graphical interface on a hierarchical conceptual

model since best captures the underlying structure of the graphical interface without

requiring domain-specific knowledge of the graphical application. The primary

relationship represented in the hierarchical model is the parent-child relationship between

interface objects. These relationships appear to be the basis for how blind users

conceptualize graphical interfaces. In many ways, they are likely to be the basis for how

all users conceptualize graphical interfaces given the importance of structural information

in this class of interfaces. Spatial organizations are problematic since graphical interfaces

typically generate spatial layouts based on space-conserving constraints that are often

confusing for blind users. Conversational models require domain knowledge to capture

24

the functionality specific to the application interface. This information would be

extremely difficult, if not impossible, to obtain from a generic X Windows application.

One important limitation of the hierarchical model is that it does not effectively capture

the power of a visual, spatial presentation. Two advantages of the visual interface are that

the user can quickly recognize interface objects from the bit mapped pictures on the

screen, and that the user can quickly scan the collection of onscreen objects. Therefore, two

critical requirements of the design are that the user can quickly recognize interface objects

and that the user can quickly survey the contents of the interface.

4. MERCATOR INTERFACE DESIGN

In this section, we describe the basic interface design for Mercator. The primary question

that we address is:

Given the hierarchical model of the graphical interface, what auditory interface do

we present for a blind user?

The inherent disadvantage of all auditory interfaces is they are largely invisible. For this

reason, a significant portion of this design will focus on conveying the contents of the

auditory interface. Users must be able to determine the identity and attributes of the

various objects that make up the auditory interface.

In addition to recognizing individual objects, the user must be able to navigate the space

of the interface. The controls for navigation must support the user’s mental model of the

auditory interface. For example, moving the mouse cursor across a graphical screen

supports the notion of the interface as a picture in 2D space. Navigation must be safe so

that navigation is orthogonal to manipulating the user interface.

25

After users are able to navigate the auditory interface and identify the objects within it,

they need the ability to manipulate those objects to accomplish their tasks. The most

common manipulation is the ability to select an object whether it is a menu button or a

text field. In the graphical interface, selection is generally accomplished by clicking on a

mouse button. When we manipulate an interface, changes in the interface convey

feedback as to the ramifications of our actions. The auditory interface must also provide

conventions for manipulating the interface and providing feedback to the user.

4.1 Conveying Auditory Objects

To convey the contents of the auditory interface, it is necessary to convey the types of

objects in the interface as well as attributes and affordances of those objects.

Conveying Object Identity

Numerous strategies for conveying objects in auditory interfaces have already been

suggested by previous work. Possible strategies include using speech, pure tones,

earcons, or auditory icons. For example, an auditory cue to convey a text-entry field could

be:

• A synthesized voice saying “text-entry”

• A pure tone such as G-sharp (~ 415.3047 Hz)

• A musical timbre of a violin

• The sound of an manual typewriter

Each of these approaches has advantages and disadvantages. The speech message is

unambiguous and reasonably efficient, but may be confused with other speech messages,

i.e. reading the label on the field. A pure tone is easy to produce and takes minimal time to

26

hear, but may be confused with other pure tones. Also the mapping of the note G-sharp to

a text-entry field would be difficult to remember. Various musical timbres would also be

easy to produce, and would be easier to discriminate than pure tones, but again, the

mapping from violin to text-entry is hardly intuitive.

This design is based on the premise that auditory icons (see Gaver 1988, 1994) offer the

most promise for producing discriminable, intuitive mappings. In the previous example,

the sound of an old-fashioned typewriter maps easily to a text-entry field. The user is

reminded of typing or entering text. In general, the use of auditory icons mimics how

information is conveyed in graphical interfaces. We recognize many objects in graphical

interfaces by their physical appearance. Sometimes concrete representations are used such

as the picture of a trashcan. Abstract icons also leverage our understanding of the physical

world. Although Motif push buttons do not look like button controls in the physical

world, they look pushable. Likewise, an auditory icon may not sound like a real push

button, but the sound may indicate an object that can be pushed.

Two alternate design strategies that were considered and discarded were using speech or

earcons. Synthesized speech is required for presenting textual information in the

graphical interface. This information is domain-dependent, such as the text in an

electronic mail message or the labels on a pull down menu. By relegating speech to

domain-dependent information, and respectively relegating nonspeech cues to domain-

independent information, the user can more easily separate these classes of information1.

The structured combinations of musical sounds employed in earcons by Blattner and

others (1991, 1992, 1994), have been successfully used in providing access to mathematical

equations for blind users (see Stevens, 1995). That use of earcons was especially

compelling since the natural prosody for reading mathematical equations mapped well to

27

the rhythm of presenting successive earcons. In Mercator, the primary role of the auditory

cues is to convey the types of objects in the graphical interface. We concluded that iconic,

everyday sounds would be more intuitive than abstract, musical sounds.

In Mercator, we use a set of auditory icons to convey the identity of various interface

objects. Some auditory icons are fairly concrete like the typewriter and the printer, while

the sounds for various buttons are more abstract. The following table provides a listing of

some of the auditory icons used in Mercator. The selection of sounds was based on a series

of experiments exploring how people describe sounds and how they map concepts in

graphical interfaces to sounds. These experiments are discussed in (Mynatt, 1994, 1995).

FIGURE 6 ABOUT HERE

Conveying Object Characteristics

From our model of the graphical interface, we know there are many characteristics of the

interface objects that we need to convey to the user. The use of auditory icons often serves

to convey the affordances of the objects as well. For example, the typewriter sound should

convey the affordance of entering text just as the push button sound helps convey the

notion of pushing. But there are other attributes of objects we need to convey such as its

label, whether it is greyed out, and its relative size.

1. Since speech sounds are often less ambiguous than nonspeech, everyday sounds, speech output

plays a role in supporting first-time users. We use redundant speech output to help users learn

the meaning of the different nonspeech cues. The design of user levels is discussed later in this

paper.

28

Text-based attributes can be presented via synthesized speech. For example the auditory

icon for a push button can be presented simultaneously with its text label. Other attributes

can be presented by modifying the base auditory icon.

Auditory icons are not limited to simply reflecting categories of events and objects, but

can be parameterized to reflect their relevant dimensions as well. For example, the auditory

icon for a file can be manipulated to convey the size of the file. Gaver’s (1994) techniques

for parameterizing auditory icons are similar to the filtears described by Ludwig, Pincever

and Cohen (1990,1991). We used the following filtears because they could process sounds

in real-time1:

• Muffling

High frequency energy in the auditory cue is removed, causing the cue to sound

deeper in pitch with reduced intensity.

• Thinning

Low frequency energy in the auditory cue is removed, causing the cue to sound

higher in pitch with increased intensity.

By combining these filtears with modifying the overall intensity of the sound, we can

create the impression of an auditory object being selected or greyed out.

Since muffling or thinning a sound affects our perceived pitch of the sound, we use these

filtears to modify other auditory icons where the pitch of the auditory icon can be

associated with its size or spatial location. If we strike two metal bins where one bin is

1. Facilities for muffling and thinning audio samples, as well as for playing, mixing and

interrupting sounds was provided by NetAudio II, a tool developed by David Burgess (1993).

29

much larger than the other, the sound of the larger bin will have a lower perceived pitch.

Containers are objects in Mercator that group other objects, such as a collection of push

buttons. The auditory icon for a container is an opening door. We modify this sound to

indicate the number of items in the container. We use the same technique for text areas, so

that the perceived pitch of the typewriter is based on the number of lines.

Sometimes it is helpful to convey the spatial location of an object or its position in a serial

order. We modify the cursor sound to indicate how many lines down the cursor is in a

textual list. We also slightly modify the sounds of grouped buttons indicating a button’s

location in the serial order. The modification is slight because extreme modifications are

reserved for conveying the selection state of a button (selected, normal, greyed out).

FIGURE 7 ABOUT HERE

4.2 Navigation

In addition to recognizing individual objects, the user must be able to navigate the space

of the interface. The controls for navigation must support the user’s mental model of the

auditory interface. For example, moving the mouse cursor across a graphical screen

supports the notion of the interface as a picture in 2D space. Since the conceptual model of

the auditory interface is a hierarchical structure, the navigation controls should map to

moving throughout that structure. For the controls to feel automatic, it is necessary for the

meanings of the controls to be consistent throughout the interface, just as moving a mouse

is consistent across the screen. This design is in contrast with typical phone interfaces

where the meaning of the control (Press 1 to do this) is often context dependent.

Another comparison to mouse navigation is that navigation must be safe in the sense that

it is orthogonal to manipulating the user interface. When users move a mouse across the

30

screen, the interface may respond to give more information, but users are generally safe

from triggering potentially harmful events such as stopping or starting an application. To

support this separation, the navigation controls need to be distinct from the controls used

to select or otherwise manipulate objects.

In Mercator, at the simplest level, the user uses the arrow keys on the numeric keypad to

navigate a tree structure that corresponds to the condensed, hierarchical model of the

graphical interface. The user presses up and down to move in and out of groups of objects

and presses left and right to move within groups of objects. When the user moves to an

object, they hear the auditory icon (possibly filtered) for that object. If the user attempts to

move in a direction where no object exists, e.g. moving right when you are at the end of a

cluster of push buttons, they hear a simple error sound of a ball bouncing against a wall.

The premise is that the users reinforce their mental model of the auditory interface since

the navigation is explicitly based on the hierarchical structure.

For the graphical interface pictured in Figure 3 whose respective tree structure in shown

below, a user navigating from the top of the structure to the push button “delete” would

hear:

FIGURE 8 HERE

This technique would be tedious if the user had to listen to the entire auditory icon each

time they moved to an object. Although the auditory icons are short, average of one

second, they are interruptible within approximately 50 ms. This set-up allows the user to

quickly move throughout the interface. Also, it is important to remember that the

navigation controls are consistent throughout the interface. Expert users seem to exhibit a

form of muscle memory where they quickly press a sequence of keys to jump to parts of

31

the interface. Some users even orient themselves by quickly moving to an “edge” in the

tree structure, hearing the out-of-bounds sound, and then proceeding. Overall the feel of

the navigation is quick and responsive.

Navigation Shortcuts

The persistent image of the graphical interface coupled with mouse input allows sighted

users to quickly move from one portion of the interface to another. Even though Mercator

users can quickly move throughout the interface, it is beneficial to provide keyboard

shortcuts for expert users. One useful shortcut is the ability to move to the beginning, or

end, of a group of objects. This jump is accomplished by hitting the 1 and 3 key,

respectively, on the numeric keypad. The user hears quick snippets of the auditory icons

for the objects that are “passed over” by using the short-cut.

Although the user could switch between applications by navigating to the “top” of an

application and over to the next application, the user can press the right or left arrow key

coupled with the Shift or Alt key to switch between applications. When the Alt key is

used, the user is moved to the “top” of the next application. When the Shift key is used,

the user is moved to their last location in that application saved from the last time they

used that application. This control helps the user recover their working context within an

application. When the user switches between applications, they hear a paper flipping

sound that should remind the user of switching between tasks, as well as the windows

that are popping to the front of the screen contents. The new application name is

announced with a message, such as, “Framemaker is the current application.”

The user can also set hot keys for the row of keys above the numeric keypad. These keys

can be used to move to a designated spot in an application interface that is specific to that

32

application. The numeric keypad, annotated with the navigation controls, is pictured in

the following Figure 9.

FIGURE 9 ABOUT HERE

Although the navigation short-cuts assist the user in moving quickly throughout the

hierarchy, they still do not afford the same freedom as quickly moving the mouse from

one part of the screen to another. Different interaction styles not explored in this research

include using a spatial model for the interface where the user could operate the mouse to

move from one portion to another. Likewise, a tactile interface representing the tree

structure could be used to provide a persistent overview as well as a medium for large

jumps in the interface.

Auditory Preview

One limitation of auditory interfaces is the difficulty in presenting an overview of the

interface contents. When sighted users look at a graphical interface, their eyes can quickly

scan the interface to get a rough determination of its contents. Sometimes they can tell if

they are where they want to be by the visual features of the interface. This technique

applies to reading text as well. Robert Steven’s (1995) design of an auditory preview of

mathematical equations can be applied to previewing portions of the Mercator interface.

An auditory preview is simply short snippets of auditory icons that are played in quick

succession. By the overall length and diversity of sounds in the preview, the user gets a

rough sense of the contents. The user can ask for previews of any group of objects, for

example, objects grouped in a container or in a pop-up dialogue.

Sometimes the user does not need an auditory preview, but simply needs a reminder

about the current object. In a visual interface, we can look away and then look back,

33

regaining our visual focus. A user of an auditory interface may also need to regain the

auditory focus. By pressing the 5 key, the user hears the auditory cue (may be a

combination of nonspeech and speech output) for the current object. The inclusion of this

feature is a simple example of learning from user feedback. The first Mercator interface

did not include this control, and users (including us) would navigate away from and then

back to the current object to regain the auditory context.

4.3 Manipulating the Interface and User Feedback

Up to this point, the description of the user interface has focused on the user perceiving

and navigating the contents of the auditory interface. The next step is allowing the user to

manipulate the interface. In this section, we describe how the users manipulate Mercator

interfaces, as well as the feedback that the user receives from Mercator. The auditory

feedback cues used in Mercator are summarized in Figure 10.

Selection

A principal action that users perform with graphical interfaces is selection. The action is

typically accomplished by clicking (or double-clicking) on an object with the mouse. Since

the Mercator user is working with the keyboard and not with the mouse, mapping

selection to a keystroke reduces the distance that the users’s hand must move. In

Mercator, pressing the Enter key on the numeric keypad is mapped to selecting an object.

Mercator can determine what mouse events the application expects (e.g. single or double

click) and then simulate those events for the application.

Given the limitations of manipulating sampled sounds, creating pairs of sounds for {this

is a push button, you just pushed a push button} was too difficult given the set of auditory

icons used in Mercator. If the user successfully selects an object, the user will hear a short

34

sound akin to someone ripping a batch of papers. This sound was chosen because it

seemed to imply that something was happening, indicating to the user that the selection

event had taken place. Since few users could actually identify the sound as ripping

papers, they did not express any negative connotations about the sound. A longer

discussion of the action-oriented content of sounds is presented in (Mynatt, 1994, 1995).

Pop-up Windows

Pop-up windows are an interesting case of the content, structure and focus of the interface

changing almost instantaneously. When a pop-up window appears, the space of the

interface (its content) is now augmented with the contents of the pop-up window.

Likewise the structure of the interface, and our hierarchical model, is augmented by the

structure of the pop-up. Often the input focus of the interface is moved to the pop-up as

well, for example, modal pop-ups that require users to confirm or cancel an action before

proceeding.

In graphical interfaces, pop-up windows capture the user’s attention by being drawn on

top of the other windows. In Mercator, whistling sounds are used to notify the appearance

or disappearance of a pop-up window. A whistling sound with a rising pitch indicates

that a pop-up has appeared, while a descending pitch indicates that a pop-up has

disappeared. If the input focus is shifted to the pop-up, the user is moved to that location

in the application tree structure. This move is indicated by the auditory icon for the pop-

up window, a springy sound. There is a deliberate attempt to reinforce the terminology of

pop-up window with these sounds. Both the whistling and spring sounds help form the

illusion of something popping up in front of you.

35

When the user dismisses a pop-up, they are placed in their original location, where they

were before the pop-up appeared. For example, in Figure 3, when the user presses the

reply push button, they hear the following sounds as the pop-up appears on the screen:

“Rip” the selection is successful

“Whistle-up” the pop-up appears on the screen

“Spring” the user is moved to the top of the popup structure

If the user navigated to the cancel button, selecting that button and thereby dismissing the

pop-up, they would hear:

“Rip” the selection is successful

“Whistle-down” the pop-up disappear from the screen

“Ca-chunk” “Reply” the user is moved back to the reply push button

Pop-up windows are stored in the interface model as descendants of the uppermost node

of the application tree structure since they are perceived as separate windows on the

screen. When the pop-ups are not modal, the user can navigate up out of the pop-up and

back to the main application structure. If the pop-up is modal, such as requiring a confirm

or cancel operation, the user is not allowed to navigate out of the pop-up, retaining the

semantics of the interface.

FIGURE 10 ABOUT HERE

Interacting with Text Objects

Screen readers for text-based interfaces, such as the command line interface to DOS, have

existed for many years. These interfaces have formed a set of standard requirements for

reading and manipulating text areas1. One requirement is support for two “cursors,” an

36

edit cursor that is located at the insert position in the text, and a review cursor that can be

moved independently to read portions of the text. Operations for moving and

synchronizing the cursors are coupled with operations for reading text by character, word,

line, sentence and paragraph. Different filters are used to parse and pronounce the text

based on the current task requirements. For example, a Unix filter can be used so that the

command:

more dissertation.text | grep Mercator

would be read as:

more dissertation dot text pipe grep Mercator

To review a text area, the user is required to enter “text mode” by pressing the ./Del key.

For example, when the user navigates to a text area (hearing the typewriter sound), they

then press the ./Del key to enter text mode. This operation is accompanied with a rolling/

rocking sound to indicate moving into a different state. While in text mode, the keys on

the numeric keypad are mapped to operations for reviewing text. The users can return to

navigating the interface by exiting text mode, again pressing the ./Del key and hearing

the rolling sound.

Some of the commands provided in Mercator for reading and manipulating text are

summarized in the following figure.

FIGURE 11 ABOUT HERE

1. Although there is not a paper detailing requirements for text-based screen readers, we were

able to determine the needed functionality by examining existing screen readers and talking

with blind computer users.

37

User Levels

Based on experience with demonstrating and evaluating Mercator, it became clear that the

interface could be modified to support the transition from a novice to expert user. The tcl

interface code was easily extended to support three user levels (Novice, Intermediate,

Advanced). The primary modifications focused on information presented to the user

when they navigated to an object, and when they requested information about an object.

Based on observations of people using Mercator, three stages of learning became

apparent.

• Recognizing auditory icons

The users learned the sounds for push buttons, text areas and so on.

• Parameterized auditory icons

The users learned how the auditory icons are manipulated to convey attributes of

objects such as a push button being greyed out.

• Understanding modes

Users learned that they have to enter “text mode” to review the contents of a text

area.

The current user level determined the amount of redundant speech information. What the

user would hear, per user level, after navigating to a greyed out push button labeled

undelete, is shown in the following table.

FIGURE 12 ABOUT HERE

When the user asks for information about an object by pressing the 5 key, they hear the

information corresponding to one level less experienced than their current setting. This

strategy helps users transition between levels. For example, a user can switch to operating

38

as an Intermediate, but still get additional information for objects that they have forgotten

or have not encountered.

5. ASSESSING MERCATOR’S INTERFACE

During the course of this research we have utilized many methods for assessing

Mercator ’s design including discussing our design with users and other designers,

observing people using Mercator as well as observing how people teach others to use

Mercator, and measuring the performance of people conducting specific tasks. To collect

quantitative data on the learnability of Mercator, we measured how quickly sighted users

reached peak performance in a specific task of reading and replying to email messages

using a graphical email application. One motivation for using sighted people in this

experiment is that we also examined the effects of transitioning between using the

graphical and auditory versions of the same application.

We have also compiled reactions by blind users that we have received over the past three

years. We did not perform controlled experiments with blind users for two reasons. First,

previous experience with computers appears to be an overriding factor in how well blind

users perform with screen readers for graphical interfaces. It would have been difficult to

control previous experience so that performance data would be meaningful across

subjects. Second, the available sample of blind users in the Atlanta area generally had no

computer experience. In contrast, users attending conferences for assistive technology,

generally had comparable experience with computers and were motivated to use

graphical interfaces. We discussed Mercator’s design with potential users at over ten

conferences that included an emphasis on assistive technologies. At three of the these

39

conferences, Mercator was available for use over multiple days among the product

exhibits. From these experiences, we have summarized favorable and critical assessments

of Mercator interfaces.

5.1 Measuring Performance with Mercator

Having already observed that blind users could learn to use Mercator, we wanted to

assess how well sighted users performed with Mercator for two reasons. First, we needed

a controlled setting in which we could measure the time needed to learn to use Mercator.

Based on demonstrations with blind and sighted users, it appeared that computer literate

sighted users took longer to learn the interface than computer literate blind users, but that

the stages of learning were the same.

Second, we wanted users to contrast their use of a graphical interface and the Mercator-

derived auditory interface. One hypothesis was that experience with the graphical

interface would be beneficial in using the auditory interface since the two interfaces share

the same structure.

In order to assess users’ performance with the auditory interface, as well as determine the

effects of prior experience with the graphical interface, test subjects worked with

graphical and auditory versions of the application xmailtool. A screen shot of the

graphical interface is shown in Figure 3.

Quantitative data was calculated from analyzing activity logs. The logs indicated each

time an event had occurred in the interface, such as moving to a new object, entering or

exiting text mode, or selecting an object. With the subjects’ consent, we videotaped the

sessions including training and debriefing in addition to the test trials.

40

Seventeen subjects worked with combinations of the graphical and auditory interfaces.

The subjects were randomly divided into four groups as shown in the following table. The

group designation determined which interfaces they used, and in what order. For

example, in Group 2, the subjects started with the graphical interface, but switched to the

auditory interface after four trials. The subjects in Group 3 only used the auditory

interface.

FIGURE 13 ABOUT HERE

In each trial, the subject selected, read and replied to three specified email messages.

The training for the experiment was conducted in three stages.

• Description of the Task

I told the subjects the details of the task they were to perform, namely that they

were to locate, read and reply to three specified email messages. I explained that in

each message was a test phrase that they would need to type into their reply.

• Description of the Interface

At this point, I either described the graphical interface or the auditory interface. I

explained how to navigate the interface and how to select objects.

I also showed the subjects a diagram of the common structure of the graphical and

auditory interfaces similar to the diagram in Figure 5.

• Demonstration of the Task

I demonstrated replying to one email message. I went through all of the steps

including writing and sending the reply.

41

Learning the Auditory Interface

The most promising result of the experiment is that all of the subjects were able to learn

how to use the auditory interface. The average time to complete a trial sharply decreased

after one trial with peak performance achieved around the fourth trial (see Figure 14).

Another important result is that the variance in time taken sharply decreased after one

trial (average of 401.33 to average of 88.96).

FIGURE 14 ABOUT HERE

Stages of Learning

So what did the subjects learn? From observation and inspection of the data, it appears

that four concepts were acquired in the approximate order:

1. Basic Auditory Icons

Since the subjects had only heard a brief demonstration, they needed to spend some time

recognizing and learning the auditory icons. Although ten sounds were needed in this

interface, the subjects never asked what a sound meant. They seemed to use the 5-Info key

to hear the auditory icon coupled with redundant speech information until they learned

the meaning of the auditory icon.

2. Navigation

The biggest hurdle in using the interface is understanding the hierarchical navigation

scheme. Subjects who had never seen the graphical interface had to learn that the down

and up keys took them in and out of groups of objects. Improved navigation times greatly

contribute to overall improved performance times. In part, improved navigation times

42

seemed to be impacted by how safe the users felt. As users realized that they could

navigate the interface without causing unwelcome consequences, they increased their rate

of input, “bouncing off the walls” when they went too far in any direction.

3. Parameterized Auditory Icons

As the subjects continued using the interface, it became apparent that they were learning

to listen for the pitch differences between auditory icons of the same class. For example,

the reply push button is in the container with 18 children. This container has a deeper

sound than other containers in the interface. Likewise the text areas with the headers and

message are much larger than the text area with diagnostic output. Subjects learned to

listen for the container and text areas with a lower pitch helping them locate these objects

faster and more reliably.

4. Text Mode

A common guideline in human-computer interaction is to avoid modes in the interface.

Mercator has one mode and it proved problematic. When users navigate to a text area,

they need to enter text-mode so that the numeric keypad can then be used to navigate the

text as opposed to navigating the rest of the interface. Often a subject would reach a text

area, but not remember to switch into text mode. Common guesses were selecting the text

area and trying to navigate down into the text area (not a bad idea!).

Transitioning between the Graphical and Auditory Interfaces

One way to demonstrate that the auditory interface captures critical characteristics of the

graphical interface is to look for a transfer effect when the user transitions from using the

interface in one modality to using the interface in the other modality. For example, if the

user has experience with the graphical interface, this experience should help the user

43

learn the auditory interface. Unfortunately quantitative measurements did not

demonstrate that such an effect took place. There are two reasons related to the

experimental design that may help explain why the transfer effect was not evidenced:

• Exposure to Interface Structure

During the training, I showed all of the subjects a diagram of the interface structure.

Users of the graphical interface paid little attention to the diagram. In contrast,

users of the auditory interface studied the diagram and indicated that they would

have preferred to consult the diagram during the task. The information in that

diagram is in essence the information that should cause a transfer effect. Experience

with the graphical interface should give the user information about the structure of

the interface. By showing the diagram to the users of the auditory interface, I

accidently gave those users the same information that the transfer effect is based on.

Therefore the effect was hidden by the improved performance of the users of the

auditory interface.

• Graphical Task Too Easy

Performing the task with the graphical interface required little cognitive effort. The

performance times increase over the trials is likely due to boredom. The subjects

spent most of their time trying to determine what I was actually testing them on.

One subject asked me if I was manipulating the lights in the room. Since they did

not have to think about the task, they internalized little information about the

content of the graphical interface.

During the debriefing, subjects who first used the graphical interface and then used the

auditory interface made three interesting observations:

44

• Exposure to Graphical Interface Helped in Using Auditory Interface

Although not evident in the quantitative analysis, the subjects reported that their

experience with the graphical interface was helpful in understanding the auditory

interface. Aspects of the graphical interface that were helpful included knowing the

objects in the interface, the spatial ordering of the objects, and the relative sizes of

objects.

• Subjects Needed to Update their Simple Model of the Interface

Although subjects reported that their exposure to the graphical interface was

helpful, they remarked that they needed to form a more complex model of the

interface when working with the auditory interface. They did not describe forming

a new model, but augmenting their simple model with more information. For

example, in the graphical interface, the subjects could easily ignore a number of

objects in the interface. Since they had to navigate past these objects in the auditory

interface, they needed to augment the interface model with these objects.

• Initial Transition Between Spatial and Hierarchical Was Difficult

Since the subjects had a fresh visual image of the graphical interface in their minds

when they began working with the auditory interface, they typically tried to

navigate the interface based on the spatial layout. Most of the interface objects are

arranged top to bottom in the graphical interface, but since they are sibling objects,

they are accessed by moving left and right in the auditory interface. Navigation

errors from trying to move in spatial directions generally disappeared during the

first trial.

45

5.2 Observations by Blind Users

Reactions to Nonspeech Auditory Cues

Blind users have expressed an overwhelming positive response to the use of everyday

sounds in screen reader interfaces. As noted previously, users of current screen readers

have difficulty separating interface information, such as “Push Button’” from application

information, such as “Edit,” when both types of information are presented with speech or

braille. When blind users were able to work with and listen to the Mercator interface, they

remained impressed with the use of everyday sounds. In addition to particularly liking

the typewriter and whistle sounds, in contrast to sighted users, blind users liked the

container sound and were rarely confused about its use. Users commented that the

filtering of the auditory icons was subtle, noting that many designers unnecessarily

exaggerate changes in audio.

Reactions to Hierarchical Interface Structure

In contrast to the use of everyday sounds, blind users were skeptical about hierarchical

navigation schemes as presented during design briefings. The general consensus was that

they needed to “know what was on the screen” since that was what their sighted

counterparts used. Only after using Mercator, did users express their preference for this

scheme.

Users have requested that Mercator allow them to print out information about the

structure (object hierarchy) of an interface using a braille printer. Users experimenting

with this strategy refer to consulting the constant tactile image while exploring the

auditory interface. The tactile image seems to provide some of the functionality that the

constant visual image provides to sighted user.

46

A new screen reader also uses an underlying hierarchical model. The system, called Virgo,

transforms Microsoft Windows interfaces into braille interfaces. Instead of using auditory

icons, the first two braille cells contain a code that represents the type of objects, and the

remaining braille cells contain the label and highlighting information.

5.3 Meeting Goals for Screen Reader Design

After discussing the benefits that graphical interfaces provide for sighted users, we

outlined six goals for transforming graphical interfaces into auditory interfaces. Given the

auditory interface design discussed in this paper, how well does Mercator meet those

goals?

• Access to functionality

By providing general strategies for representing graphical interfaces with auditory

interaction techniques, Mercator provides transparent access to applications for

word processing, electronic mail, calendars and so on. In these text-based interfaces,

spatial information in the interface is generally mapped to structural information.

One exception is when domain specific information such as the text in a document

is searched spatially using the controls for manipulating and reading text.

One advantage of Mercator is that all objects in the interface are treated as first class

objects. In contrast to current screen readers, users do not have to define special

view areas to access portions of the interface that do not accept user input such as

message bars.

• Iconic representations of interface objects

When possible, interface objects are grouped into the same discrete objects that

sighted users perceive. The identify and attributes of these objects are conveyed

47

with auditory icons. Like their graphical counterparts, auditory icons leverage

knowledge of the real world in presenting interface output.

• Structural organization

A central motivation in Mercator’s design is to convey the underlying structure in

graphical interfaces. The groupings of objects, conveyed with visual cues in the

graphical interface, are made evident as the user navigates into, within, and out of

object groups. These groups help clarify the functionality of individual objects.

• Direct manipulation

As in graphical interfaces, users directly interact with objects in the interface and

interface output is conveyed via the objects. In as much as the graphical interface

provides objects that match how user’s conceptualize tasks with the application,

Mercator provides a direct manipulation interface.

• Spatial arrangement

A primary difference between Mercator and commercial screen readers is that

Mercator is based on a hierarchical model of the graphical interface as opposed to a

spatial model. Mercator, however, does provide information about the spatial

attributes and layout of the graphical interface. The relative sizes of objects are

conveyed by manipulating their base auditory icons. Information about the layout

of text is conveyed by modifying the sound of the edit cursor as it is moved

throughout the text. The layout of objects helps determine their ordering in the

auditory interface.

Nevertheless, information about the layout of the interface is lost in this

representation. Likewise, users are not able to arrange application windows along

48

spatial dimensions. This design trade-off was made to offset existing usability

problems with commercial screen readers.

• Persistent presentation

A benefit of visual interfaces is that they exist in physical space and can be reviewed

over time creating a surrogate short-term memory for recalling the contents of the

user interfaces. This type of persistent presentation is difficult to achieve in a

complex auditory interface where multiple continuous sounds are confusing and

distracting. To improve the user’s scanning capabilities, we provide the preview

facility. The short snippets of the auditory cues help convey portions of the

interface, and is sufficiently succinct to confirm the user’s location in the interface.

Some blind users have experimented with using braille printouts of the interface

structure. The users refer to this constant tactile image while exploring the auditory

interface.

6. FUTURE WORK

This design is effective for blind users working with text-oriented applications such as

word processors, electronic mail and other menu and form-based interfaces. The

challenge of providing access to more graphical applications such as drawing programs

remains. One area of future research is incorporating the use of a tactile display. The

auditory and tactile displays could be used to create complementary presentation of the

graphical interfaces. The tactile display would help offset some of the limitations of the

auditory interface by providing a constant presentation of the interface as well as

supporting large moves across the space of the interface.

49

In many ways, this research addressed an important, but overly constraining problem of

transparent access to graphical applications. Once the constraint of transparency is

relaxed, one could imagine combining aspects of spatial and conversational interfaces into

the default hierarchical interface to leverage domain-dependent interaction. The potential

of adding voice interaction is especially compelling. We have extended the Mercator

architecture to include voice as a potential input source, but we have not furthered

explored its use. The inclusion of a spatial model could aid in providing access to a

broader range of applications that inherently include spatial content such as drawing and

map-based tasks.

Sighted computer users could also benefit from auditory representations of graphical

interfaces while performing eyes-busy tasks such as driving, performing maintenance on

a airplane, or inspecting a manufacturing plant. The needs of these users will be different

however. For instance, supporting mobility will likely be a key requirements. In these

cases, improving the flexibility of conversational interfaces may provide the most

promise.

Background. This article is based on the Ph.D. thesis of the author. Elizabeth Mynatt joined

Xerox PARC in 1995 from the Georgia Institute of Technology. At Georgia Tech, she completed

her doctorate in computer science by developing a method for transforming graphical user

interfaces into auditory user interfaces. One application of this work is providing access to

graphical interfaces for blind users.

Acknowledgements. The Mercator project represents a multi-year, multi-person effort.

Thanks go to Keith Edwards, Tom Rodriguez, Kathryn Stockton, Ian Smith, Sue

50

Liebeskind, Sue Long, Kevin Chen, Will Luo and Stacy Ann Johnson for their design and

implementation contributions.

Support. This research was supported by Sun Microsystems, the NASA Marshall Space

Flight Center, the National Security Agency, and the Georgia Institute of Technology.

Author Address. The author can be reached at: Xerox PARC, 3333 Coyote Hill Road, Palo

Alto, CA 94304, USA. Email: mynatt@parc.xerox.com

HCI Editorial Record.

REFERENCES

(1989). outSPOKEN, The Talking Macintosh Interface. User Manual. Berkeley Systems.

Blattner, M., Glinert, E. P., and Papp, A. L., III. (1994). Sonic Enhancements for 2-D

Graphic Displays: In G. Kramer (Ed.), Auditory Display: Sonification, Audification and

Auditory Interfaces (pp. 447-470). SFI Studies in the Sciences of Complexity Proc. Vol.

XVIII, Addison-Wesley.

Blattner, M. M. & Greenberg, R. M. (1992). Communicating and Learning Through Non-

Speech Audio: In A. Edwards & S. Holland (Eds.) Multimedia Interface Design in

Education (pp. 133-143). Springer-Verlag, NATO ASI Series F.

Blattner, M. M., Sumikawa, D. A, & Greenberg, R. M. (1991). Earcons and Icons: Their

Structure and Common Design Principles. Human-Computer Interaction 4(1), 11-44.

Boyd, L.H., Boyd, W.L. & Vanderheiden, G.C. (1990). The graphical user interface: Crisis,

danger and opportunity. Journal of Visual Impairment and Blindness, December. 496–502.

Burgess, D. (1993). The NA3 Audio Server. Final report to Sun Microsystems.

51

Day, G. (1995). Personal communication.

Edwards, A. D. N. (1989). Modeling blind users’ interactions with an auditory computer

interface. International Journal of Man-Machine Studies, 575-589.

Edwards, A. D. N. (1991). Evaluation of Outspoken software for blind users (Technical Report

YCS150) University of York, Department of Computer Science.

Edwards, A. D. N. (1992). Graphical User Interfaces and Blind People. Proceedings 3rd

International Conference on Computers for Handicapped Persons, 114-119. Vienna.

Edwards, W.K., Liebeskind, S. H., Mynatt, E.D & Walker, W.D. (1995). A Remote Access

Protocol for the X Window System. Proceedings of the 9th Annual X Technical Conference,

O’Reilly & Associates, Inc.

Edwards, W.K. & Mynatt, E.D. (1994). An Architecture for Transforming Graphical

Interfaces. Proceedings of UIST’94: User Interface Software and Technology Symposium, 39-

47, New York: ACM.

Edwards, W. K. & Rodriguez, T. (1993). Runtime Translation of X Interfaces to Support

Visually-Impaired Users. Proceedings of the 7th Annual X Technical Conference, 229-238,

O’Reilly & Associates, Inc.

Gaver, W. W. (1988). Everyday listening and auditory icons. Unpublished doctoral

Dissertation, University of California, San Diego.

Gaver, W.W. (1994). Using and Creating Auditory Icons. In G. Kramer (Ed.), Auditory

Display: Sonification, Audification and Auditory Interfaces (pp. 417-446). SFI Studies in the

Sciences of Complexity Proc. Vol. XVIII, Addison-Wesley.

Glinert, E.P. & York, B.W. (1992). Computers and People with Disabilities. Communication

of the ACM, 35(5), 32-35.

52

HumanWare, Artic Technologies, ADHOC, & The Reader Project. (1990). Making good

decisions on technology: Access solutions for blindness and low vision. Proceedings of

the Closing the Gap Conference.

Hutchins, E.L., Hollan, J.D. & Norman, D. A. (1986). Direct Manipulation Interfaces: In

Norman, D.A. & Draper, S.W(Eds.), User Centered System Design (pp. 87-124).

Lawrence Erlbaum Associates.

Ludwig, L. L. and Cohen, M. (1991). Multidimensional audio window management.

International Journal of Man-Machine Studies, 34(3) 319-336.

Ludwig, L. L., Pincever, N. & Cohen, M. (1990). Extending the notion of a window system

to audio. Computer, August, 66-72.

Ly, E. (1993). Chatter: A Conversational Telephone Agent. Master’s Thesis, Program in Media

Arts and Sciences, MIT.

Mynatt, E. (1994). Designing Auditory Icons. Proceedings of the Second International

Conference of Auditory Display, ICAD ‘94, 109-120, Sante Fe Institute.

Mynatt, E. (1995). Transforming Graphical Interfaces into Auditory Interfaces. Doctoral

Dissertation, Georgia Institute of Technology.

Mynatt, E. & Weber, G. (1994). Nonvisual Presentation of Graphical User Interfaces:

Contrasting Two Approaches, Proceedings of the ACM Conference on Human Factors in

Computing Systems, 166-172, New York: ACM.

Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books.

Schmandt, C. (1993). Phoneshell: the Telephone in Computer Terminal. Proceedings of

ACM Multimedia Conference, 373-382, New York: ACM.

53

Stevens, R., Brewster, S., Wright, P. C., & Edwards, A. D. N. (1995). Design and Evaluation

of an Auditory Glance at Algebra for Blind Readers. Proceedings of the Second

International Conference of Auditory Display, ICAD ‘94, 21-30, Sante Fe Institute.

Stifelman, L. J., Arons, B., Schmandt, C. & Hulteen, E. A. (1993). VoiceNotes: A Speech

Interface for a Hand-Held Voice Notetaker. Proceedings of INTERCHI '93, 179-186,

New York: ACM.

Yankelovich, N. (1994) SpeechActs & The Design of Speech Interfaces. Adjunct Proceedings

of the 1994 ACM Conference on Human Factors and Computing Systems, New York: ACM.

Yankelovich, N., Levow, G., and Marx, M. (1995) Designing Speech Acts: Issues in Speech

Interfaces. Proceedings of CHI ‘95, 369-376, New York: ACM.

