
PAPERS CHI 97 * 22-27 MARCH 1997

Timewarp: Techniques for Autonomous Collaboration

H! Keith Edwards and Elizabeth D. Alynatl

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

+1-415-812-4405
{kedwards,mynatt] @pare.xerox.com

ABSTRACT
This paper presents a set of techniques for supporting
autonomous collaboration-collaboration where participants
work independently for periods, and then join together to
integrate their efforts. This paper posits that autonomous
collaboration can be well-supported by systems in which the
notion of time is made both explicit and editable, so that the
parallel but divergent states of a shared artifact are exposed
in the interface. We have developed a system, called
timewarp, that explores these. ideas, and provides support for
distribution, awareness, and conflict resolution in an
application-independent fashion.

KEYWORDS Autonomous Collaboration computer-
Supported cooperative work awareness, conflict
detection and resolution timewarp.

INTRODUCTION
The computer-supported cooperative work community has
often classified collaborative sessions, and the applications
used to support them, into two broad categories. The term
synchronous collaboration is used to indicate that users are
engaged in a tightly-coupl~ same-time effort. Typically
such systems present very fm+grained exchanges of
information among users, and may approach a what-you-
see-is-what-I-se-e (WYSIWIS) style of interaction.

The other broad category of interaction is asynchronous
collaboration. While more loosely defin~ asynchronous
collaboration has typically been taken to mean collaboration
that happens (or can happen) at different times. Group
calendars and bulletin boards are the oft-cited examples.
Users interact with some shared srtifac~ and this interaction
doesn’t necessarily have to happen at the same time. Even if
it does happen at the same timq users may not be notifkd of
the interactions of others since updatea among users are not
as fine-grained as in synchronous interactions.

Autonomous Collaboration
R~ently, other styles of collabomtion (perhaps not
completely orthogonal to the ones mentioned above) have

Permission 10 makedigitathvd copiesof all or partof thismaterialfor
pwscrrmlor classroom use is grmstedwithout fee provided that the copies
are not made or distributed for profit or commercial adwmtage, the copy-
right notice, the title of the publication and ik date appear, and notice is
given thatcopyright is by Permission of the ACM, Inc. To copy other-wise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
CHI 97, Allm]ta GA LISA
COpyrl@ 1997 AChi (J-8979 1-802-9/97/03 ...$3.50

been named. One of these is autonomous collaboration [6].
While the term may seem to be an oxymororL the notion of
autonomous collaboration captures many of the styles of
work seen in the every&y world. Autonomous collaboration
is characterized by periods in which groups of usens work
independently on a loosely-shared artz~act.These users then
wme together for periods of tightly<oupled shan”ng to
integrate the disparate work done by collaborators.
Coordination and comprehension of paralle~ independent
efforts necessitates awareness of current and past e~orts
among users.

Perhaps the most common example of autonomous
collaboration is “traditional” (non-computer mediated) paper
writing. Typically each writer will take a section of the
paper, return to an oftlce, and begin writing. Periodically, the
writers will “synch up” to integrate their changes, and make
sure their text is not contradictory or redundant.

Autonomous forms of collaboration are appealing because
they loosen the constraints that more tightly-coupled forms
of collaboration often impose. Collaborators are free to work
wherever and whenever is convenient for them. Autonomous
collaboration is also usefid in situations where connectivity
to the network is not always assured. Examples include
mobile or at-home usage, or settings with unreliable network
infrastructure.

Another common example of autonomous collaboration is
group paper reviewing. Typically, an author will print
several copies of a paper draft and give these to coworkers
for review. Each coworker will-separately-annotate the
paper and suggest revisions. The editor then takes these
comments and integrates them.

These comments refer back to an instance of the paper as it

~P~ d a certain moment in time. As the editor
integrates the suggested revisions, the document changes.
While it shares some similarities with the document the
reviewers commented on by virtue of its common history, it
has also accreted a number of difhrences with that version.
As more reviews are return@ the author is tasked with
integrating changes that refer back to a version of the
document that no longer exists. The editor needs the ability
to edit the document as it existed when it was last shared
between all of the authors irrespective of the modifications
being introduced.

CHI 97 * 22-27 tvi ARCH 1997 PAPERS

In this collaborative writing scenario, the editor also needs to
be able to review how the document has changed over time
as a result of the individual contributions by the authors. For
example, the editor may need to survey changes made to a
document during the past week, or to assess the
contributions of a certain author, One author may need to
determine what changes have made since he or she last
visited the document. These situations show the importance
of awareness in the setting of autonomous collaboration.

Time As A First Ciass Citizen
The central premise of this paper is that autonomous
collaboration can be supported by making the notion of time
explicit in the interface. One manifestation of this principle
is that applications can provide muitiple parallel timelines to
organize and coordinate the work of independent
collaborators. This is in contrast to most synchronous and
asynchronous collaborations where the actions of users
create a serial ordering, and conflicts are quickly detected or
resolved.

As the paper reviewing example shows, when collaborators
are only loosely sharing an artifac~ each will have their own
view of the state of the artifac~ which will evolve more or
less independently. By making time explici~ tools for
autonomous collaboration acknowledge that people often
work in parallel, but independently, for long periods of time,
producing interim results that may conflict with the efforts of
others. The users’ style of work is represented in this model
of collaboration.

Another aspect of making time explicit in autonomous
collaboration is that time should be malleable. Once time is
made visible to users, they should be allowed to interact with
it to accomplish their goals. Put succinctly, the application’s
notion of time and history need not rigorously reflect these
concepts in the “real world.” Users should be able to modi~
and interact with document histories as needed.

For example, an author working on formatting for a large
document project can modify the document’s state at a point
in the history logically bejiire other collaborators split off to
work independently on parallel versions. Changes made
“prior” to the split are immediately reflected in the later
versions. The ability to edit timeiines is crucial to integrating
the parallel work of collaborators.

introducing Tlmewatp
We have developed an application tooiki; and a number of
applications on top of this toolki$ to support autonomous
forms of collaboration. The chief technique supported by
these systems is the use of multiple independent histories or
tintdines of the shared state during the collaboration. Users
can easily interact with documents and artifacts at arbitrary
states of their developmen~ and merge multiple timelines to
produce a coheren~ unified result. We call this technique and
the toolkit that implements it timewa~.

Rather than treating a document or other artifact as a static
entity that has a fixed value for any given point in time,
timewarp applications make the document’s entire history

explicit in the interface. Users interact with the document
independently at different points in its history, or they can
work in different (but related) parallel histories.

Autonomous collaboration requires users to deal with
multiple versions of a documen~ be able to notice and
resolve conflicts among versions, and maintain awareness
about the actions of others. Timewarp supports these
activities by making the notion of time both explicit and
malleable in the interface. So rather than requiring users to
maintain information about versions and conflicts in their
heads, we provide an externai representation of document
timelines that serves to mediate and coordinate the
participants in a collaboration.

IrI this paper, we explore how the timewarp system meets the
needs of autonomous collaboration. In the next section, we
describe the basic timewarp syst~ and the timewarp model
for presenting multiple parallel document timelines to
collaborators. Since this work was inspired by efforts in
programming-by-demonstration, collaborative drawing, and
version control systems, we discuss how timewmp expands
on these concepts. Nex4 we present a sample application
built using the timewarp toolkit. We then address a number
of issues that arise when history itself can be rewritten by
collaborators: what are the ways in which users can
profitably interact with tim~ how can we support both loose-
and tight-coupling through these interactions, how can we
deal with conflicts in a setting where users have divergent
views of the state of the world, and how can awmeness be
supported in an autonomous setting. We close with a brief
discussion of implementation details and a set of directions
for future research.

TiMEWARP BASiCS
As state~ the central notion in the timewarp toolkit is thag
rather than forcing users to implicitly maintain a model of
the multiple states that a shared document maybe in during a
loosely-coupled collaboration, we make the document
timeiines explicit in the interface.

But what does it mean to make timelines explicit? Timewarp
applications typically present two views onto a document.
The first is a window showing the state of the document at a
single point in time. The second view shows all of the
document’s states, organized into histories called timelines.
The sum of ail timelines of the document constitutes the
complete “universe” of the document+ meta-history of all
timelines.

The viewer for this meta-history typically presents the
timelines as a singly-rooted directed acyclic graph (see
Figure 1). Each node in the graph represents a discrete state
in the document’s history. Each edge represents some action
that was performed on the document by a user to advance it
to a new state. By selecting nodes, users can jump to pre-
existing states in the document. The system maintains a path
through the graph, from the rcmq through the currently
selected node, and out to some trailing node. By selecting a
node outside their current timeline, users can jump to other
paraliel timelines.

219

PAPERS CHI 97 * 22-27 MARCH 1997

FIGURE 1: History View Window

The document viewer shows the shared document as it
existed at the selected state, and provides the basic interface
for editing and interacting with the document. A slider on the
document viewer moves the current state through the current
timeline. Users can go to “upstream” nodes-states that
existed before the current one in the document’s history-by
dragging the scrollbar backwards. Likewise, users can visit
“downstream” nodes-states after the current one-by
moving the scrollbar forward. The document presented in
the viewer changes as the scrollbar moves to reflect its state
at the desired point in time.

Further, users am edit any state of a documen~ even if it
exists upstream in a timeline. Changes can be made to
propagate downstream from the point of edit to the present
state of the document.

Figure 2 shows the document viewer window for one sample
timewarp application, an oftlce interior layout system.

FIGURE 2: An Office Leyout Application

While timewarp applications can be used in a single-user,
stand-alone mode to organize versions and provide
effectively inilnite undo, these applications are most
compelling when used by multiple users.

Timewarp allows multiple, distributed users to interact with
a document autonomously. That is, any number of users can
edit a document collaboratively. They may interact with the
document at the same time or different times, but the system
presents each with the complete global set of states that
represents the document’s meta-history. Users can explicitly
share state with one another by working from portions of the
history graph that share a common path. Alternatively, users
can work on divergent paths of the graph and integrate their
changes later when convenient. As we will explain later, the
system can detect potential conflicts, and allow users to
resolve them.

To support coordination among users, timewarp provides a
set of tools for enhancing awareness of users, actions, the
state of the documen~ and its history. Users can fluidly
traverse document timelines or jump to any point in a
timeline. A set of “magic lenses” allows users to gather
detailed information about the document state. The facilities
for awareness are discussed in detail later in this paper.

Previous Work

To a large exteng the approaches presented in this work are
inspired by work by Kurlander on Chimera [7], and by
Rhyne and Wolf on WeMet [8]. Kurlan&r’s system supports
the construction and use of “editable graphical histories”—
graphical representations of past actions in an editor that are
themselves editable. Chimera raises the question of what are
the implications of being able to make changes to the
representation of a document at an earlier point in time.

Rhyne and Wolf present a collaborative handwriting and
drawing surface. The system provides a scrollbar at the top
of the window to move forwards and backwards in time. The
system accmnrnodates late joiners to a collaborative session
by allowing them to replay the events that occurred prior to
their arrival. The technique of traveling through a
document’s history is shown in a compelling way by this
applidon.

Our work differs from these previous efforts in a number of
ways. Chimera’s primary focus is on the creation of by-
example macros, not collaboration. While the system
supports the editing of prior graphical states, there is only
one timeline for the documeng and upstream changes are
always propagated downstream. Further, conflict detection
and resolution do not appear to be addressed.

WeMet focuses on breaking down the barriers between
synchronous and asynchronous collaboration. Like
timewarp, it supports multiple users, each with multiple
views of the document space, and allows branching of the
timeline. Unlike timewarp, WeMet only supports simple
divergence of the document timelines (similar to “split
mode” in our system, see below). Further, there are no
facilities for integrating “upstream” changes in the timeline,
and thus no facilities for conflict detection and resolution.

220

CHI 97 * 22-27 MARCH 1997 PAPERS

There are no mechanisms for joining disparate tirnelines
together, and no “meta view” that presents the entire set of
parallel document timelines.

Other closely related research includes work by Berlage and
Gemu on Gina [2]. Like timewarp, the Gina work uses a
toolkit approach, and a centralized server-based
implementation. Gina provides special attention to merging
using the technique of selective redo. Timewarp provides
more flexible support for conflict handling, however,
including the ability to tolerate outstanding conflicts caused
by application semantics. Timewarp also provides more
facilities for interacting with and editing the parallel
timelines, and provides support for awaxeness among
participants and across time.

Tirnewarp has some similarities with version control (VC)
applications-both systems manage the progression of a
document through time, by checkpointing the document at
different versions, and notifying users of conflicts.

But there are a number of important differences between
timewarp and most version control systems:

●

●

●

Whereas in the VC model, di&ences are computed and
conflicts are detected only when a check-in is perform~
timewarp allows applications to define their own
semantics for detecting differences and conilicts. Some
applications may choose a continuous, “real time”
computation of state changes, while others may opt for a
more heavy-weighg coaraer-grained approach.

Tnewarp provides a number of collaborative features for
awaxeness, synchronous interaction and replay that are
not found in version control systems.

Perhaps most importantly, VC systems do not allow
upstream modifications to a document to propagate to the
later downstream versions. If a revision is based on an
upstream versio% a split is created in the version tree.
Timewarp supports a number of in-place editing modes
that allow changes to propagate downstream.

me timewarp, the Bayou system has support for
applicationdefined conflict handling semantics [9]. But
Bayou is primardy a data storage facility, without higher-
level programming interfaces specific to collaboration.
Bayou does not have the notion of explicit timelines, and
does not have support for awareness.

AN EXAMPLE APPLICATION
We have built several applications using the timewarp
toolki~ including a structured drawing editor and a text
editor. Here we present an interior design application that
allows users to collaboratively edit the layout of furniture
and interior walls in an office setting.

The main window of the layout application is shown in
Figure 2. The interface displays an offke layout in an
axonometric viewl that can be scaled and scrolled. A palette
on the left of the window provides tools for selecting,
placing, rotating, and moving pieces of office furniture and
interior walls. The scrollbar at the top of the application

allows users to “move” through their current timeline. The
menu at the top provides access to several other windows,
including the “meta-history” view shown in Figure 1, a list
of users (both current and imctive), and other tools.

One semantic constraint that the application places on users
is that two objects cannot be located in the same place at the
same time. When positioning objects on the floor plan,
“snapping” is used to prevent objects from being placed in
the same space.

We refer back to this particular application in later examples.

EDITING TIME

A powerful feature of timewarp is that it allows users to
interact with a document at any point in its history, and
affect later states of the document. This is in contrast to
version control systems, changes to an early version of a file
represent a new branch off of the version tree. They do not
propagate outward to all derived versions.

In tirnewarp, document histories are malleable. Thus,
changes can be made to a document at any point in ita
history, and these changes can be made to “ripple” out to
later states. Sometimes these changes can result in
incmsistenciew how timewarp deals with these
inconsistencies is discussed later.

This ability is crucial for autonomous collaboration because
it allows users to integrate changes that affect all
cdaborators globally. For example, if a number of users are
editing a docurneng one user may insert an upstream change
into the document’s timeline to make the change
immediately visible to all collabomtora cumently working at
downstream states. The in-place editing of prior document
states allows the system to, when necessary, act as a tightly-
coupled synchronous editor where changes are immediately
broadcast to all parties. This behavior is in contrast to the
situation where users work independently on their own
branches of the document history and integrate them later.

The timewarp tools support a number of ‘lime editing”
modes that govern how new changes to the document are
inserted into the history graph. These modes are:

● Split mode

● Insert mode

● Retained mode

● Coupled mode.

● Join mode

Spilt Mode
Split mode is the default time editing mode for most
applications. In split mode, a change made while the user is
at a trailing (childless) node in the history graph causes a
new state to be appended, derived from the fret. If the user is
at an interior node-that is, a node with children-the

1. An axonometric view is a “false” 3D projection. where all
parallel lines stay parallel in the 2D representation.

221

PAPERS CHI 97 * 22-27 MARCH 1997

history graph forks at that point. The old set of children

remain and are unaffected by the change, while a new child
state and edge are created.

Before
fjfj

FIGURE 3: Effect of Split Mode

Figure 3 shows before and after picttnes of a change to the
graph in split mode. Before the change is made, node 1 is the
current node. Afterwards, node 3 has been appended and
made the current node.

Split mode is the principal tool that allows autonomous
interaction in timewarp. Divergent timelines allow multiple
users to interact with similar but disparate versions of a
shared artifact. In essence, each user interacts with a private
“parallel history” of the documenq which may share some
context in common with other branches.

InsertMode

Insert mode allows in-place changes to be made to the
document timeline. Insert mode handles changes made at
trailing nodes the same as split mode: a new node is
appended and the user continues. In interior nodes, howeva,
insert mode causes a new state to be appended after the
cument node. The existing children of the current node are
reparented to the new node.

This mode introduces a new change upstream in a timeline—
in essence, the document’s history is rewritten. All of the
downstream states are effectively changed as they now
include the effect of the new action taken by the user.

Before

After

❑

FIGURE 4: Effect of heft Mode.

Figure 4 shows an insertion being done. Prior to the insertion
the cwrent node is 1. After the insertion, node 3 is created
in-place and made the current node.

Insert mode has the potential to introduce a number of
conflicts into the state of the system. See below for more
discussion of conflicts. Insert mode is useful for making an
immediate change that affects downstream nodes+d
hence the users currently working at those nodes. It also can
serve as an editing convenience in single-user use.

Retained Mode.

In insert mode, the original path that existed before the
insertion is lost. Once the insertion is made there is no way
to revert to the old history. This behavior is often desired if
the change to be made is small or if the need to have the
change is certain. At other times, though, users may wish to
retain the original history when the insertion is made.
Retained mode provides this behavior.

Retained mode works exactly like insertion mode except that
when a modification is made to an interior nod% retained
mode copies the original downstream portion of the gmph. A
split is then made between the original downstream nodes
and the new path that contains the inserted change. In a
sense, retained mode is a “safe” version of insert mode that
does not lose the original timeline.

Figure 5 shows an example of retained mode.

Before

After

‘--%#-%
FIGURE 5: Effact of Retained Mode

Join Mode
‘I’hemodes discussed so far allow users to split the document
timelin~ or add changes in place. For cohborative
applications, however, the goal is typically to produce one
result at the end of the collaborative task. Particularly, in the
case of autonomous collaboration having flexible tools that
allow users to work along divergent paths is usefu~ but in
most cases users still need to merge those divergent paths
into one final state that represents “the ftished product.”

Join mode allows states on multiple paths to be joined
together, producing a new state representing the union of the
actions taken in the two parent paths. Like the modes that
allow insertion along a timeline, join mode can result in
conflicts if the set of actions taken along the two parents are
not compatible with one another.

Figure 6 shows an example of join mode.

Join mode facilitates the stage of autonomous collaboration
where users come together to merge a set of disparate
changes into one result after working separately for a period.

DEALiNG WiTH CONFLiCT3
Much of the power of tirnewarp is that it allows a document
to be edited at any point in its history. Changes can be
inserted upstream in a timeline, which then propagate to all
derived states of the document. However, allowing such
interactions with past and paraiiel states introduces the
potential for conflict.

222

CHI 97 * 22-27 MARCH 1997 PAPERS

FIGURE 6: Effect of Join Mode

As an example, consider a sequence of operations in the
layout application. A user may create an objecl place it on
screeu move i~ copy ig and paste it any number of times. If
the user goes to the point in time prior to when the object is
copied and deletes iq a potential conflict exista: the object
just deleted is referenced later in this timeline.

Making earlier states editable-a situation not commonly
found in the real world where history typically goes
unchanged-introduces the potential for a class of
paradoxes2 wmmon in science fiction writing: you can go
back in time and prevent yourself from being bcnq but then
how cart you go back in time in the fwst place?

Such operations are conflicts because they violate temporal
&pendencies in the history of the document. A temporal
dependency indicates that an ordering relationship exists
between two operations. In the example above, the ob@ct
must exist if it is to be copied and pasted.

Temporal dependencies exist because of the editable nature
of timewarp timelines. But other types of dependencies can
exist because of application constraints as well. For example,
the layout editor has a spztial &pendency no two objects
can exist in the same place at the same time. The semantics
of other applications may introduce new classes of
dependencies, each of which can generate conflicts if the
dependencies are violated.

A complete discussion of the mechanisms provided for
conflict detection and resolution is outside the scope of this
paper, although the Implementation section does give a high-
Ievel picture of these mechanisms. In shm the timewarp
toolkit provides a set of application-independent facilities for
dealing with conflicts that fall into three classes:

● Detection

Applications can speci~ facilities for detecting domain-
specific conflicts. These facilities are used to evaluate
whether a conflict exists each time the timeline is
modified.

2. In our system. we catl pamdoxes “conflicts.” Saying that
conflicts can arise during the execution of an application seems
somehow less threatening to computer scientists than saying that
an application causes paradoxes.

●

●

Visualization

Applications can provide their own visualizations for
presenting conflicting data to the user. For example, the
timeline scrollbar may be decorated with information
showing the locations of conflicting states or, as in the
case of the layout application, conflicting objects may be
rendered differently.

Resolution

Applications may provide their own policies for
resolving conflicts, complete with a user interface for
interactions with users when help is needed to resolve a
particular contlict. One example of a policy for dealing
with temporal conflicts is to sever the dependency
between conflicting objects. For example, an object
resulting from a cut and paste operation may be
instantiated as a “stand-alone” objec~ even if the
originally cut object is deleted.

The timewarp facilities for handling conflict can tolerate
ambiguity-that is, certain applications may be able to
operate in the face of inconsistent data. For example, the
layout application does not rigorously enforce spatial
separation of objects. If an insertion or join operation results
in two objects being at the same location (a violation of
application semantics), the conflict system renders the
overlapping objects transparently to indicate that they are in
an ambiguous state (see Figure 7). Users can choose to
tolerate this ambiguity, or resolve the conflict by editing the
layout.

FIGURE 7: Two Overlapping Objects Are Drawn
Transparently

SUPPORTING AWARENESS
Awareness is the trait of knowing about the environment you
exist h. what are your surroundings, who is around you,
what are they doing. Awareness is essential in collaborative
activities because it gives us an indication of how to
correlate and coordinate our activities with others [4].

Most work on awareness, however, has focused on what
might be termed synchronous awareness-awareness about
what is going on around you right now. In contras~
autonomous collaborations require a different form of
awareness. Since the collaborators axe only loosely-
coupled-they may not be working at the same time, and
they are almost certainly not working at the same state of the
document+ynchronous awareness techniques by
themselves are insufficient.

We have explored a number of techniques for providing
awareness in an autonomous setting in timewarp. These
techniques provide a sense of the overall history of the

223

PAPERS CHI 97 * 22-27 MARCH 1997

documen~ as well as spedlc, directed forms of awareness
information. These are described below.

Awareness of History

The most immediate and important form of awareness is
awareness about the history and state of the document being
shared.

Timewarp provides two mechanisms for users to become
aware of the history of the document they are interacting
with. The first is the timeline scrollbar at the top of the
document viewer. This scmllbar allows users to easily replay
any actions that occurred at any time in the document’s
history. Changes in state are accompanied by animation that
highlights the salient differences between states.

By interacting with the timeline scrollbar, users gain a sense
of the relationships between document states, and the
changes that a document has gone through.

The second mechanism is the global “meta-history” viewer.
This window presents a “gestalt” view of the document’s
history. Whereas the scrollbar allows interaction along one
particular path in a document’s history-the currently
selected one-the graph view allows users to see all the
parallel timelines of a document. Users can see the “big
picture” of the document’s history, visit any state, and see
what collaborators’ views of the world are.

Magk Lenses for Autonomous Collaboration

In addition to techniques for examining the document’s
overall history, and the changes between states, timewarp
also provides a set of tools for presenting very speciilc forms
of awareness information to users. Most of these tools take
the form of fnugic Zenses [3]. Magic lenses (or just “lenses”)
are an interaction technique for selectively presenting
alternative views of information on a two-dimensional
surface. A lens is dragged over the surface, and the
information viewed “through” the lens is altered in some
way to add or filter infcmnation.

Timewaxp provides a number of lenses that can be used by
collalmrators to inspect the document and the shared history.
Figure 2 shows the ‘Identify User” lens being passed over a
floor plan in the layout application.

Knowing About Peep/e. Perhaps the most important kind of
specific awareness information is knowing about fellow
collaborators. Timewarp provides a set of lenses for
retrieving information about people in a collaboration.

●

●

Identify Usec The lens identifies the creator of any
object it passes over.

Filter User. Only objects created by a specified user are
displayed. The rat tie not shown by the lens.

Knowing About Actions. A second broad category of lenses
presents information about the actions that have taken place
in a document’s history. These include:

s Show Actions The edges on the graph view of history
are annotated with description of the actions that took
place at those transitions.

● ShOw Conflicts. The graph is decorated with information
showing conflicting actions.

Knowing About Time. The third category of awareness lens
shows information about time.

● Difference States. This lens graphically shows the
differences between the current state and another state.

● Summarize Change. This lens shows regions of the
document where the most activity has taken place.
Regions of high activity are presented “smudg@’ as if a
number of users had left fingerprints there.

Taken together, this set of lenses provides users with tools to
selectively squire specific information about other users,
states, and activities in an autonomous collaboration.

IMPLEMENTATION
The timewarp toolkit and applications are implemented in
the Java language [1], using the subArctic GUI toolkit [5].
Any timewarp application can be run as a stand-alone, non-
Collaborative tool, or can be used collaboratively among a
group of users. The system uses the Java Remote Method
Invocation (RMI) system for communication between Java
Virtual Machines (JVMs, the actual Java bytecode
interpreters) running on different host computers. The toolkit
is roughly 15,000 lines of code.

Building New Timewarp Applications
The toolkit is designed to be completely domain-
independent. To write a new timewarp applicatio~ a
developer must do two things: (1) implement the user
interface that allows interaction with the document or other
artifact being shared. The various event handlers of this
interface should be tied to toolkit code that alters the state of
the history graph. (2) Implement a number of uction classes
that represent the allowable operations supported by the
application that can affect the timeline of the document.

Actions are the atoms of behavior in a timewaq application.
The set of actions for the layout program includes
CreateObjec4 Move0bjec4 RotateObjecg Cug Copy, and
Paste. The timewarp infrastructure requires that every action
be reversible. Thus, there is a base Action class from which
application writer-supplied actions are derived. This base
class requires two methods called forward and reverse that
can be used to run the action in either direction.

When the user makes a change to the shared documeng a
new Action instance representing that change is created. The
timewarp toolkit creates a new edge and node in the history
graph and stores the action at the newly-created edge
according to the current time editing mode. Thus, the action
is placed in the graph to represent the change necessary to
move between two adjacent states in the graph.

The timewarp infrastructure currently only stores the actions
needed to reach states in the graph-the states themselves
are not retained. For very large graphs or for applications
where actions are complex, this strategy may become

224

CHIQ7 * 22-27 MARCH 1997 PAPERS

problematic. For our applications, however, the cost to
recompute state on-the-fly has not been excessive.

Distribution

The tirneline graph and the actions stored in it are the only
state that must be shared among a collection of cooperating
applications. Thus, when a new timewarp session is started,
a graph server process is started to manage interaction
among clients who are editing a single document.

This server process is also implemented in Java and
communicates with clients via RIMI. The server supports
latejoiners by transmitting required graph state when a new
connection is initiated. The client-side stub code within the
Tirnewarp toolkit implements some fairly extensive caching
to provide good performance across slow links or in the case
of large numbers of users. This caching machinery is not
seen by application code.

Conflict Handling
The timewaxp toolkit provides basic infiastructum for
detecting and resolving conflicts. When a new edge is
inserted into the history grap4 a closure is applied to all
downstream edgea to see if a conflict results. Timewarp
provides facilities to application writers to define their own
closures to decide what constitutes a conflict for their
particular application domain.

If a conflict is detec@ it is passed to a conflict policy object
that decides how to handle the conflict. Ti.mewarp provides a
number of conflict policy objects that implement a range of
policies, and a number of user interfaces to conflict
resolution. Application writers are &e to provide their own
conflict policy objects if the provided ones are insufilcient.

The basic detection and resolution machinery is application-
independent=application writers provide code that
implement the semantics particular to their applications. In
most cases, application writers will only need to supply a
handful of cotict closure classes that will be used to detect
conflicts, and perhaps anew conflict policy object to be used
to dispose of detected conflicts.

STATUS AND FUTURE DIRECTIONS
So far, we have written three applications based on the
timewarp toolld a structured graphical editor. a text editor,
and the ot%ce layout program. All three of these systems
share most code in common. Gnly the graphical interface for
the document viewer and a handful of action classes were
needed in each case to construct fully timewarp-aware
collaborative applications. The offke layout program also
adds some application-spedc conflict detection,
visudizatio% and resolution code not provided by the
timewarp base classes.

Architecturally, our experiences with the system have been
positive. The facilities for defining and handling types of
conflicts speciilc to application semantics are extremely
important for autonomous application. Further, the
underlying model, supporting loose sharing of an document

by making the document’s history explicit, is a useful
technique for supporting autonomous collaboration.

There are a number of areas we plan to explore further,
however. FirsL we plan to examine how to support more
tightly-coupled synchronous collaboration in timewarp
applications, for situations where users need fine-grained
interaction. We are investigating more lenses for awareness,
and we also intend to refine our ideas about conflict
management and user interfaces for dealing with conflicts
and ambiguity. In the longer term, we are interested in
supporting even looser forms of collaboration by moving the
timewarp infrastructure from a centralized server approach
to a more fully distributed, weakly-consistent architecture.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Arnold, Kq and Gosling, James. The Java Progmm-
ming Language. Addison-Wesley Co., Reading, Mass.

1996.

Berlage, Thomas, and Genau Andreas. “A Framework
for Shared Applications with a Replicated Architec-

ture.” In Proceedings of ACM Symposium on User Inter-
face So~are and Technology (UIST). November 3-5,
1993, pp. 249-257.

Bier, Eric A., Stone, Maureen C., Pier, Ken, BuxtorL
William, and DeRose, Tony D. “Toolglass and Magic

Lenses: The See-Through Interface.” In ACM Computer
Gmphics Proceedings, August 1993, pp. 73-80.

Dourish, Paul, and Bellotti, Victoria. “Awareness and

Coordination in Shared Workspaces.” Proceedings of
ACM Conference on Computer Supported Coopenuive
Work (CSCW), November 1992. pp. 107-114.

HudsoL Sccq and Smith, Ian. “Ultra-Lightweight Con-
straints.” Proceedings of ACM Symposium on User
lnterjhce Software and Technology (UIST), 1996.

Kdar@ Markus. “Distributed System Support for Con-

sistency of Shared Information in CSCW (Extended
Abstract).” Workshop on Distributed Systems, Multime-

di% and Infrastructure. ACM Conference on Computer-

Supported Cooperative Work (CSCW), Oct. 22, 1994.

Kurlander, Davi& and Feiner, Steve. “A History-Based
Macro by Example System.” In Proceedings of ACM
Symposium on User Interface Sojhvare and Technology
(UIST). November 15-18, 1992. pp. 99-106.

Rhyne, James. R., and Wolf, Catherine G., “Tools for

Supporting the Collaborative Process.” In Proceedings
of ACM Symposium on User Interjace So@are and

Technology (LJIST). November 15-18, 1992. pp. 161-
168.

Terry, Douglas B., Theimer, Marvin Mb Petersen,

KarhL Derners, Alan J., Spreitzer, Mike J., and Hauser,
Carl. ‘lkfanaging Update Conllicts in Bayou, a Weakly

Connected Replicated Storage System.” Xerox PARC
Technical Report CSL-95-4, August 1995.

225

