
Re-framing the Desktop Interface Around
the Activities of Knowledge Work

Stephen Voida
Department of Computer Science

University of Calgary
Calgary, AB, Canada T2N 1N4

svoida@ucalgary.ca

Elizabeth D. Mynatt, W. Keith Edwards
GVU Center, College of Computing

Georgia Institute of Technology
Atlanta, GA, USA 33032-0760
{mynatt, keith}@cc.gatech.edu

ABSTRACT
The venerable desktop metaphor is beginning to show signs

of strain in supporting modern knowledge work. In this
paper, we examine how the desktop metaphor can be re-

framed, shifting the focus away from a low-level (and

increasingly obsolete) focus on documents and applications

to an interface based upon the creation of and interaction

with manually declared, semantically meaningful activities.

We begin by unpacking some of the foundational

assumptions of desktop interface design, describe an

activity-based model for organizing the desktop interface

based on theories of cognition and observations of real-

world practice, and identify a series of high-level system

requirements for interfaces that use activity as their primary
organizing principle. Based on these requirements, we

present the novel interface design of the Giornata system, a

prototype activity-based desktop interface, and share initial

findings from a longitudinal deployment of the Giornata

system in a real-world setting.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces—Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Activity-based computing, desktop computing,

context-aware computing, knowledge work, Giornata

INTRODUCTION
The venerable desktop metaphor is beginning to show signs

of strain in supporting modern knowledge work. In this
paper, we examine how the desktop metaphor can be re-

framed, shifting the focus away from a low-level (and

increasingly obsolete) focus on documents and applications

to an interface based upon the creation of and interaction

with manually declared, semantically meaningful activities.

We discuss how this class of activity-based desktop

interfaces can provide a unified model for organizing work

around activities, foster fluid multitasking, simplify

resource organization, and incorporate collaboration

capabilities into everyday tools.

Our prototype system, Giornata, demonstrates how the

traditional desktop metaphor can be re-framed to retain the

spirit of simplified interaction with applications and files

and yet better support contemporary knowledge workers’

practices by emphasizing activity as the primary organizing

principle in the interface. Giornata’s enhanced desktop

serves not only as a display space for application windows,

but also serves as an active folder for documents and other

information items associated with the current activity
(Figure 1). Giornata utilizes lightweight activity- and

document-tagging capabilities that enable informal and

evolutionary resource organization. Finally, Giornata

integrates collaboration tools directly into the desktop to

support group information sharing and activity awareness.

In this paper, we make the following contributions:

• We describe an alternative model for organizing the

desktop interface—activity-based computing—and
identify a series of high-level system requirements for

interfaces that use activity as their primary organizing

principle.

• We present the novel interface design and

implementation of the Giornata system, a prototype

activity-based desktop interface.

• We discuss the technical issues involved in realizing

Giornata and suggest ways that further research might

foster the development of future activity-based systems.

• We share some initial findings from a longitudinal

deployment of Giornata in a real-world setting.

To provide an overview of the design rationale and

implementation of the Giornata system, we first discuss

specific requirements for the design of Giornata based on

the state of existing desktop interfaces, empirical studies of

knowledge workers’ actual practices, and theories of

cognition grounded in the construct of activities. We then

provide a scenario that depicts a holistic illustration of the

system’s support for knowledge work, and conclude with
specific details about the interaction design and architecture

of the prototype implementation.

THE DESKTOP INTERFACE
The desktop metaphor was developed over 30 years ago at

Xerox PARC. The interaction techniques comprising the

desktop interface responded to the needs of knowledge

workers and the capabilities of computer technology in that

era. These multi-window environments helped foster the

multitasking practices that are now so central to modern

knowledge work. The presence of a desktop “surface”

Permission to make digital of hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10…$5.00.

211

behind application windows also provided spatially

oriented, persistent storage for icons representing files,

application shortcuts, disk drives, and, eventually, the
computer, itself.

As computers have grown more powerful and expectations

about their capabilities have evolved, the desktop and the

personal computing environment that it serves to ground

have also evolved to enable new kinds of interactions.

These changes can be broadly classified as new ways to

manage space on the screen, new ways to manage stored

information, and new tools to connect to other individuals.

One of the first major extensions to the desktop metaphor

was the development of virtual desktops, exemplified in the

Rooms system [12]. Rooms was based on a study of

knowledge workers’ task management practices and

acknowledged that individuals tend to focus their

interactions within semantically meaningful clusters of

windows. This model was subsequently incorporated into
the majority of X-windows window management tools.

Other approaches to screen space management included

space-filling tiled window techniques [14], grouping

application windows (“pages”) into manually-defined

groups (“binders”) that behave as a single window [4],

grouping windows using existing window management

tools like the Windows Taskbar [26], and even projecting

the window environment into the third dimension [23].

Other space-related extensions include the incorporation of

information awareness “widgets” alongside regular

application windows (e.g., Apple’s Dashboard and

Microsoft’s SideShow [6]).

Different models for information storage have also begun

to disrupt the original model derived from information

management on the physical desktop, which maps
individual documents to individual files in the filesystem

and each of these documents to a single window. Piles [19]

and BumpTop [1] investigated grouping behaviors similar

to those provided for windows via virtual desktops, but did

so at the level of managing iconic representations of

documents and applications where they are stored. Some

information types—most prominently, e-mail, but also

media files such as music and photos—are often not

managed through the traditional desktop interface but are

instead managed in separate information “silos” [5], stored

separately from “traditional” documents and accessible
only through a dedicated application, such as an e-mail

client or a music “jukebox” application. The migration to

more web-based storage and manipulation of documents is

extending this distance between the desktop metaphor and

individual documents; it is not uncommon to have a

window be the only representation of a document available

locally, with the file itself stored in a web-based repository.

Finally, the desktop metaphor was designed primarily for
supporting a single individual; the intervening years have

seen a dramatic increase in reliance upon collaboration-

focused tools like e-mail and IM and much more pervasive

use of remote servers to store all kinds of content. Most

desktop interfaces provide relatively impoverished

representations of these connected and collaborative

resources. Attempts to create desktop-like collaboration

interfaces (e.g., [25]) have demonstrated the potential in

integrating collaborative functionality into systems at a

Figure 1. The Giornata interface. In this screenshot, an individual is engaged in managing a particular client s business
account. There are several tags (including the client s name, “Acme”), two open windows, six files (three of them
shared), three colleagues, and one group associated with this activity. During typical use, the Contact Palette
automatically slides off-screen and application windows cover other Giornata interface elements until they are needed.

212

deeper level. However, despite their focus on desktop-like

collaboration support, these tools are typically realized as

stand-alone applications and do not integrate into existing

desktop interfaces or more diverse work practices.

AN ALTERNATIVE TO THE TRADITIONAL DESKTOP
METAPHOR: ACTIVITY-BASED COMPUTING
Rather than attempting to displace the existing desktop

metaphor entirely, we posit that reframing the existing

desktop metaphor around the higher-level construct of
activity can address many of the limitations inherent in

current desktop interfaces.

Cognitive theories can inform the computational

representation of activities and help to define the design

space for activity-based desktop interfaces. For example,

activity theory models activity from the perspective of an

individual (the subject) through three mutual relationships:
• the relationship between the subject and her objective

(i.e., how she approaches, understands, and works

toward satisfying the objective of the activity);

• the relationship between the subject and the

surrounding community (i.e., how she interacts with

others while working towards the objective); and

• the relationship between the community and the

objective (i.e., what others do to help—or hinder—the

subject’s accomplishment of the objective) [31].

These relationships are mediated by other components of

the activity (Figure 2), including the tools used or created

in accomplishing the activity and the social structures

dictating interaction within the larger community. Activity

theory suggests the importance of encoding the tools

(applications and resources) associated with the activity,

the larger social context (individuals and groups, and

perhaps the roles each play) in which the activity takes

place, and some indication of the temporal evolution and

connections among activities in activity-based systems.

However, adopting these kinds of structured

representations of activity within an activity-based system

does not necessarily imply that the interface representations

of those activities need—or even should—be rigid or

prescriptive. An alternative theory of cognition, situated

action, posits that representations of activity serve different

purposes at different times [27]. Flexibility at the moment

of action is essential in enabling the activity to unfold, but
structured records of the activity can serve as important

organizational, communicative, and collaborative artifacts.

This theory suggests that activity-based tools need to allow

for flexible specification and modification of activities, and

that activity representations should persist after the

activities themselves are completed, so they can be used as

communicative tokens and templates for future activities.

These two theories provide the basis for our computational

model of activity: a semantically defined cluster of tools

(applications), information resources (documents) and

social context (colleagues) that incorporates a history of use

and can be flexibly appropriated on a moment-to-moment

basis. In order to establish more detailed design guidelines

for activity-based systems, we examine three challenges

with which activity-based systems need to engage (adapted
from [30]), grounding each in previous empirical research

on knowledge work practices that highlight the function

and structure of activity in day-to-day computer use.

Supporting Fluid Work Practice
Knowledge work is often associated with the practice of

multitasking. At any point in time, knowledge workers—

particularly managers—are involved in multiple,

interwoven activities [2, 11]. These activities tend to exist

in parallel, that is, “users rarely complete any time-

consuming activity before beginning another task” [2].

First and foremost, activity-based tools need to support

multitasking (or “multi-activity”) behaviors and to avoid

creating additional work for people to manage these

activities electronically. Giornata uses as its starting point

the virtual desktop metaphor popularized by the Rooms

system [12]. As a result, Giornata inherits several

requirements for supporting fluid work practice that focus

on integrating activity management tools into the

underlying desktop infrastructure and helping to ensure that

the interfaces used to control the virtual desktop aspects of
the system necessitate as little interaction overhead as

possible during typical use of the system.

Requirement 1. To integrate into existing work practice,

activity-based systems should provide a unified activity

model across all applications, rather than being embedded

in a single application.

Requirement 2. Activity-based systems should provide

lightweight mechanisms to create, change, and alter

activities, since heavyweight interaction techniques are

likely to deter adoption and use.

Supporting Multifaceted and Evolving Activities
González and Mark’s extensive studies of knowledge

workers led them to identify activities (in their language,

“working spheres”) as being inherently multifaceted; that

is, each activity
shares a common motive (or goal), [involves] the
communication or interaction with a particular
constellation of people, uses unique resources and has its
own individual time framework. With respect to tools,
each working sphere might use different documents,
reference materials, software, or hardware [11].

Their definition emphasized the interrelationships among

the various components of an activity and suggested that

Figure 2. Engeström s visualization of the mediating
relationships in activity theory (after [9]).

213

activity-based systems would need to incorporate

sufficiently sophisticated activity models to represent these

often-complex structures.

Activities also relate to the ways in which information is

stored, organized, retrieved, and used. In her study of

knowledge workers, Kidd noted that:

• knowledge workers rely little on filed information,

taking prolific notes as part of the meaning-making

process, but rarely revisiting them after the fact; and

• the spatial layout of a knowledge worker’s materials is

important as a “holding pattern” for short-term

organizational purposes and before the materials have

been classified and can be filed [16].

Malone’s study of how knowledge workers organize their

desks revealed a related distinction between files and piles

in the office environment:
[F]iles are units where the elements (e.g., individual
folders) are explicitly titled and arranged in some
systematic order (e.g., alphabetical or chronological)…In
piles, on the other hand, the individual elements (papers,
folders, etc.) are not necessarily titled [or]…arranged in
any particular order [18].

Kidd and Malone both highlight the significance of

information organization in the meaning-making process.

Prior work in creating and studying the use of personal

information management tools also resonates with this

position (e.g., [13]). This research suggests that a

combination of informal and formal mechanisms for

storing information can help knowledge workers to

organize information throughout the meaning-making

process and that search-oriented and semantically

meaningful retrieval techniques will likely be more useful
than their browsing-oriented counterparts for working with

previously filed information.

Requirement 3. Activity-based systems should provide

tools for informally and formally organizing disparate

information within activities. Informal information

organization tools should emphasize quick storage and

retrieval, without forcing people to explicitly name or find

a permanent place for artifacts; formal mechanisms should
correspond to long-term storage and retrieval practices.

Requirement 4. Real-world activities “overlap” in the

way they use artifacts; a given artifact may be used in

multiple contexts. Activity-based systems’ representations

of activity should support this overlap, rather than

prescribing that activities be orthogonal or that their

artifacts exist in only one context.

Requirement 5. Activity-based systems should allow post

hoc definition of activities, enabling individuals to map

their evolving understanding of the activities into the

system; individuals should be able to create initially

unnamed activities and then refine them after the fact.

Artifacts used in unnamed activities may need to acquire

these refined declarations of use as these activities evolve.

Supporting Collaboration Through Activities
Most knowledge work is inherently collaborative [3, 15,
28] and cognitive models of activity (e.g., activity theory)

almost always take into account the social context within

which work takes place [9, 31]. The information

transformations most common in this class of work require

discussion and cooperation among multiple stakeholders.

Even when collaboration isn’t critical for a particular

activity, that activity almost certainly draws upon

information created by others at an earlier point in time or

results in some deliverable that is then handed off to others

[28]. However, most collaboration takes place within tools

that do not distinguish among different work contexts. This

suggests that activity-based systems should help people

organize their communication and collaboration channels in

ways that parallel the organization of their activities and,

when possible, explicitly provide links between the two.

With Giornata, we focus on exploring the ways that activity

management tools are adopted and appropriated in the

context of everyday collaborations. Although our eventual

goal is to support sharing entire activities, for the time

being, we seek to understand some of the more

fundamental issues in how the availability of activity

representations and activity-based organizational tools
affect the way that individuals manage their collaborations.

Requirement 6. Activities in activity-based systems

should be usable as structuring mechanisms for

collaboration (i.e., an activity-based perspective should be

integrated into common collaborative tools).

Requirement 7. Because information sharing is a

“common case” in knowledge work, lightweight sharing

capabilities should be integrated directly as a first-class

interaction technique.

INTERACTION DESIGN
Giornata1 takes as its starting point the virtual desktop

metaphor of the Rooms and Kimura systems [12, 17]. In

addition to providing straightforward activity “spaces” into

which focused work on single activities can be

concentrated and their constituent components organized,

Giornata provides a number of novel information

organization and collaboration features.

Scenario of Giornata Use
Bob returns from a business lunch with representatives of

Acme Inc. and logs into his computer. He switches to the

activity tagged “Acme,” which automatically populates his

desktop with the files associated with the activity, restores

the visibility and positioning of relevant open windows, and

shuffles the contents of his Contact Palette to display his

colleagues also working with the company. He opens a

word processor document associated with the activity and

jots down a few notes about the outcomes of the meeting.

A few minutes later, the e-mail icon in his Dock changes,

indicating that two new e-mail messages have arrived. Bob

resists the temptation to switch over to his e-mail client,

suspecting that the new e-mails are unrelated to his current

1 Giornata is Italian for “day’s work,” and, in the context of buon

fresco (wet plaster) painting, denotes the area of a painting—the
amount of work—that can be completed in a single session.

214

task and will distract him from finishing his notes.

However, a moment later, the Contact Palette also updates

to show that one of the messages is from Sue, a colleague

working on the Acme project. He clicks Sue’s icon and is

taken to a filtered version of his inbox, displaying only

messages sent by Sue. He reads Sue’s latest e-mail and

discovers that she is planning a meeting to discuss the

progress on the Acme account. He quickly finishes working

on his notes, saves the file back to the desktop, and then

drags it into the shared region of his desktop so that Sue

and his boss—both associated with the activity—can access

the file through their corresponding activity workspaces.

Having completed the most pressing business, Bob opens

his activity overview to take stock of what else needs to be

accomplished. Seeing an activity tagged “home” and

“renovations,” Bob remembers that he had been asked to

provide a recommendation for a contractor that worked on

his house. Rather than closing the windows associated with

the lunch meeting, he simply switches to the other activity.

He begins to work on the letter when another colleague,

Jim, drops by to determine when Bob is available to review

an upcoming presentation. Bob uses a keyboard shortcut to

quickly switch to the presentation activity, decides on a

meeting time with Jim, and returns to work. Jim casually

asks about Bob’s letter, and suggests that Bob post his

experiences to an local review website, “valleybook.” Bob

adds the tag “valleybook” to the activity (automatically

tagging the file containing the letter) as a reminder to post

the finished recommendation online.

Activity-Based Multitasking
In Giornata, each activity is associated with a

corresponding virtual desktop. In order to support fluid—

and often fast-paced—work, the system enables creation of

a new, empty, untagged activity using a single keystroke

(per requirements 1 and 2). This action hides all on-screen

windows and desktop contents, presenting a clean canvas

on which work can begin on a new activity without

distraction or the need to manually manage digital clutter.

Giornata allows an individual to navigate among open

activities using a status bar menu, accelerator keys, or a

quick activity switcher (Figure 3), which operates using the

same interface principle as the application switching

service available both in Windows (invoked using alt + tab)

and the OS X operating system (via command + tab).

Although we acknowledge the need for incorporating

advanced activity management tools into activity-based

interfaces (e.g., support for resuming prior activities, use of

“activity templates” to streamline repeated tasks, and tools

for merging or splitting running activities), we did not

include these capabilities in the first iteration of Giornata

since their availability was not essential for observing how

this class of systems would be adopted in actual use.

Several recent research systems have explored enhancing

the desktop to support multitasking practices. Activity-

Based Computing [3], TaskTracer [8], and Kimura [17] all

extended the virtual desktop ideas espoused in Rooms [12],

focusing respectively on supporting mobile work across

multiple devices, informing the development of machine
learning algorithms for automatically classifying activities,

and using peripheral displays to provide activity awareness.

GroupBar [26] and Scalable Fabric [24] explored the

benefits of integrating window grouping and

“focus + context” window management into the existing

Windows desktop interface. Task Gallery [23] extended the

desktop into the third dimension, allowing activities to be

clustered and manipulated in a spatially rich environment.

Giornata distinguishes itself from previous virtual desktop

management systems in three important ways. First, the

number of virtual desktops available in Giornata is not

fixed as it is in many virtual desktop implementations;

individuals have exactly the number of virtual desktops at

their disposal as they have ongoing activities. This prevents

unnecessary overloading of virtual desktops and is intended

to speed transitions among them (requirements 1 and 2).

Second, the objects stored on the desktop and the contacts

in the Contact Palette transition in and out along with the

associated windows. This serves to provide a dedicated
storage space associated with the activity and helps to

ensure that activities are perceived as cohesive units,

including tools, artifacts, and contacts (requirement 3).

Finally, Giornata allows—but does not require—activities

to be tagged for quick identification (requirement 5).

Activity-Based Resource Storage
In Giornata, the desktop serves not only as a display space

for application windows, but also as a readily accessible

folder for documents and shortcuts associated with the

current activity. Any file saved or copied to the desktop is

automatically associated with the current activity; as an

individual switches among ongoing activities, these

resources are “swapped out” along with application
windows and temporarily stored in a folder associated with

the activity until the activity is resumed. The effect of this

feature is that the desktop workspace is automatically

repopulated with the files, folders, and other information

resources associated with each activity as an individual’s

focus changes (requirement 3). This behavior is similar to

the approaches taken by Lifestreams [10], Time-Machine

Computing [22], and the Context Browser [21], with the

main difference being the underlying organizing principle

determining the visibility of the desktop’s contents, ours

being activity instead of time.

These capabilities filter the information displayed on the

screen at any time to the most relevant applications,

information resources, contacts, and communications

(requirements 1 and 3).

Figure 3. The quick activity switcher interface. The
text across the top indicates each of the activities
tags and the icons below each thumbnail represent
the applications associated with each activity.

215

Activity Tagging
Each activity in Giornata can be annotated with optional,

freeform tags to describe its semantics. Activities are

initially created without tags; the ability to create and work

in an unnamed desktop allows work to proceed even when

an individual might not know the significance or eventual

meaning of an activity at its outset (requirement 5).

An activity’s tags help individuals identify the activity in

which they are currently working and distinguish among

background activities. The active activity’s tags are

persistently visible, rendered over the desktop wallpaper;

they can also optionally be displayed in the menu bar.

When an activity has one or more tags associated with it,

these tags are transferred to each file touched over the

course of working in that activity. This design serves to

“stamp” files with information about the context in which

they were created or edited, and helps to overcome the

burdensome process of manually adding semantic metadata

to each individual file associated with an activity, an

approach similar to that taken by Dourish et al. [7]. It also

allows documents that are shared across multiple activities

to be stored elsewhere in the filesystem and still “inherit”

tags from all activities in which they are used. Because the
Spotlight framework automatically indexes these tags,

individuals can find information resources using the

semantically meaningful tags they assigned to the activity,

regardless of where the files associated with the activity are

actually stored on the disk (requirements 3 and 4).

As an individual comes to understand the meaning of a

particular activity, she can edit the activity’s tags by
clicking on a tag icon on the desktop surface. She is then

given the option to tag the activity’s files from that point

forward or to retroactively tag all of the files previously

associated with the activity as well. This ability to create

post hoc tags on activities and files enables individuals to

refine the meaning of an activity as that meaning emerges

or changes over the course of the work. It also helps to

ensure that the system’s activity representations are

sufficiently flexible to adapt to the individual’s evolving

work environment (requirements 2 and 5).

Activity-Aware Collaboration Support
Giornata provides two features to support activity-aware

collaboration. First, Giornata integrates a subset of the
Sharing Palette interface to enable lightweight

collaboration [29]. This “Contact Palette” component,

attached to one side of the display space, provides a

persistent visual summary of the colleagues and groups an

individual has associated with the current activity (Figure

4). Like open windows and files stored on the desktop,

contacts are swapped out when transitions among activities

are invoked, providing a persistent display of contacts

salient to the current task (requirement 6).

The Contact Palette provides several awareness and

collaboration services. The system periodically connects to

a specified e-mail client and annotates the icons in the

palette with “badges” indicating the number of unread

e-mails in the inbox originating from each person or group,

providing a summary of unread e-mails potentially relevant

to the current work context (in contrast to the overall

number of unread messages, which can have little bearing

on the activity at hand). A contact’s icon can also be

clicked to reveal a variety of information about the contact;
in the current implementation, options include displaying

the Address Book card for the contact or a filtered view

within an e-mail client, showing only messages sent by the

selected contact. Finally, the Contact Palette can be used to

share files with the individuals who are associated with

particular activity using the same interaction design used in

the Sharing Palette [29]. Files can be dropped onto the

Contact Palette to share a file with a particular contact or

group (requirement 7).

Giornata’s desktop also includes a “shared files” region,

which provides a persistent, spatial connection among

collaborators’ activity desktops. When files are dragged

into this region, they are automatically replicated on each

of the collaborators’ desktops and updated each time the

files’ contents are changed2. This region acts as an

information-sharing portal across all collaborators’

desktops, but also allows all participants in an activity-

based collaboration to control, as is contextually

appropriate, the degree to which information is shared
(requirements 6 and 7).

Several prior systems have attempted to use activity as a

means for fostering collaboration, including UMEA [15]

and ActivityExplorer [20]. However, the main distinction

2 Currently, a naïve replication strategy is used to enable the

shared files region: dragging a file into the highlighted area
causes a read-only copy of the document to be created on
collaborators’ desktops, distributed and kept up-to-date using a
peer-to-peer networking protocol. Future work includes
investigating options to enable more flexible document sharing.

Figure 4. Giornata's Contact Palette. In this case, the
icons represent three colleagues and one ad hoc
group. The numbered, red “badges” indicate that the
e-mail inbox contains one unread e-mail from the
contact “Beth Mynatt” and one from a member of the
“Committee” group. The “Address Book” icon reveals
contacts from the OS X Address Book, allowing
drag-and-drop association of contacts with the
activity.

216

between these systems and Giornata is that Giornata

integrates both the activity representations and the

collaboration tools into the desktop interface itself; the

others rely on interaction within a standalone application.

Support for Implicit and Explicit Interactions
Giornata’s interface integrates closely with the existing file

and window management components of Apple OS X

(requirement 1). The OS X window manager emulates the

physical manipulation of paper on a desk by compositing

application windows on various layers above the desktop

file icons and wallpaper, but below system-wide interaction

widgets like the menu bar and Dock (Figure 5). Giornata

augments this visual stack by inserting two additional

layers: an explicit interaction layer on top of all other layers

(Figure 5a), providing persistent visibility of the Contact

Palette and allowing individuals to control the activity

management system, and an implicit interaction layer
below the desktop file icons but above the background

wallpaper (Figure 5e). This non-interactive layer serves as

a persistent information display for information such as the

current activity tags. It also passively monitors interactions

with existing desktop objects (such as desktop file icons),

providing the system with input as a side effect of other,

typical desktop interactions.

The implicit interaction layer is a particularly powerful

component of the Giornata interface design. Because it

serves as a persistent information display and is “anchored”

to the desktop wallpaper and rendered translucently, a

quick overview of the activity state can be quickly

surmised by invoking the “show desktop” feature of

Exposé. The seamless augmentation of the desktop

background also helps to convey Giornata’s status as an

integral part of the desktop environment. It also serves to

reduce visual clutter, as Giornata’s interface elements are

typically hidden behind application windows until needed.

Additionally, the implicit interaction layer, together with a

filesystem change-monitoring daemon, serves to manage

the public/private sharing status of desktop items based

solely on their location on the desktop. An individual can

indicate that a file associated with an activity is to be

shared freely with relevant colleagues by adding those
colleagues to the Contact Palette and moving the file to a

“shared files” region on the desktop. Giornata

automatically notifies the colleagues whenever files are

added to this region or existing files in that region are

changed. Likewise, dragging the file icon out of the shared

file region and dropping it elsewhere on the desktop

suspends further automatic sharing of the file.

SYSTEM ARCHITECTURE
Giornata is implemented on OS X as a hybrid Carbon-,

Cocoa-, and AppleScript-based application. The application

is designed to run continually while an individual is logged

in and provide activity-management services alongside and
independently of other system applications.

Although Giornata is technically just another application

running on the system, it is designed to integrate as closely

as possible into the fabric of the underlying operating

system. This integration is accomplished in part by building

upon high-level operating system services, which ensures

that activity-related actions within the system are

immediately reflected in other applications and the
operating system, itself (Figure 6). This design emphasizes

the role of activities while allowing an individual to run

existing applications alongside Giornata without penalty or

modification.

In the following sections, we describe Giornata’s

implementation details, focusing on our experiences in

constructing an activity-based system suitable for real-

world use on top of a commercially-available, mainstream
operating system, the ways that our system’s modules

leverage lower-level system services and APIs to

accomplish the goals of the system’s interaction design,

and persistent shortcomings of existing operating systems

that create barriers for activity-based system design.

Figure 5. Explicit and implicit interaction layers in the
Giornata system, and their relationship to existing
window manager interaction layers. This figure
illustrates the interaction layers of Figure 1: (a)
Giornata s explicit interaction layer, including activity
management dialogs and the Contact Palette; (b) the
system menu and Dock; (c) application windows; (d)
desktop icons; (e) Giornata s implicit interaction
layer, including activity tag display and sharing
space; and (f) the desktop wallpaper.

Figure 6. A high-level overview of Giornata s
architecture. The prototype builds on several core
system services and presents itself as an integrated
component of the operating system, enabling
representations of activity within existing applications
without requiring that these applications be modified.

217

Virtual Desktop Infrastructure
Giornata’s virtual desktop code is based on an open-source

virtual desktop application named VirtueDesktops3. In

order to implement the core virtual desktop functionality,

VirtueDesktops and Giornata use an existing-but-

undocumented API supporting multiple virtual workspaces

in Apple OS X, recently (officially) utilized by Apple’s

Spaces4. This API provides functions to determine the
current virtual workspace, perform an optional, animated

transition between workspaces, and get and set the virtual

workspace on which a particular window appears.

However, some of the capabilities needed to implement a

fully functional virtual desktop system (e.g., the ability to

move windows from one workspace to another) are

available only when executed in the same process context
as the core window server. In order for these calls to

succeed, Giornata takes advantage of a feature of the Mach

kernel known as code injection. Using this technique, the

code of a running process—in this case, the Dock

application, which also serves as the host for the window

server—is dynamically modified to relay information and

commands between the main Giornata application and the

window server. Another open-source library, mach_inject
5,

enabled the use of this code injection technique in Giornata.

File Tagging and Implicit Interaction Infrastructure
Giornata’s tag manager is implemented as an Objective-C

category extending Cocoa’s NSFileManager class and

provides additional functions for converting between
activity tags and comment strings and for setting and

retrieving Spotlight Comments for specified files via

AppleScript. Activity tags used to annotate a file are each

prefaced with an “@” character and appended to any

existing contents in the Spotlight Comments field using a

space character as a tag delimiter. This encoding scheme is

computationally straightforward, ensuring that the system

can quickly read or write tags for a large number of files

without incurring significant overhead. It also provides a

human-readable representation of the tags that can be

viewed or edited using the Finder or used as search
keywords in Spotlight.

When Giornata starts up, it launches a file-monitoring

daemon to observe filesystem changes and automatically

apply tags to files that are “touched.” This process, running

with root-level privileges, takes advantage of the fsevents

kernel-level filesystem monitoring facility typically used by

Spotlight to detect when files are created or changed so

they can be indexed for rapid search. This approach ensures
that Giornata “sees” any work taking place in the

filesystem and allows the system to automatically tag

changed files with semantically meaningful metadata

without incurring any additional interaction costs.

When the daemon detects that the desktop database file has

been modified, indicating that items have been added to,

3 http://virtuedesktops.info
4 http://www.apple.com/macosx/features/spaces.html
5 http://rentzsch.com/mach_inject

removed from, or moved to a different location on the

desktop, it sends a notification to the main Giornata

application that an implicit input action has taken place.

When this notification is received, the main Giornata

application examines each of the items on the desktop

using an AppleScript to determine if their desktop positions
fall within the boundaries of the sharing space. When an

item is found to be within this space, Giornata turns on the

item’s Finder highlighting (as a confirmation that the

system has recognized and begun sharing the item) and

adds the file to the list of shared files for the activity.

The implicit interaction layer is also responsible for

maintaining per-activity desktop file storage. When an

activity switch is requested, the (X, Y) position of each file
on the desktop is captured using an AppleScript and then

the current contents of the desktop are moved to a storage

folder associated with the activity, typically in the folder

named “/Users/username/Activities/activity tags”. Once the

desktop has been cleared, the desktop contents of the

incoming activity are restored and each item is manually

re-positioned at its previous location on the desktop.

Contact Palette
The Contact Palette operates as a semi-autonomous

component of the Giornata system, providing a persistent

visual representation of individuals and groups associated

with the current activity using semi-transparent, HUD-style

windows and arrays of custom, icon-centric widgets to
mimic the interface of the Sharing Palette [29].

The Contact Palette maintains awareness about the current

activity by registering for distributed notifications from the

activity manager component. When an activity transition is

requested, the palette synchronizes its contents with the

centralized activity model, updating its display to show the

contacts associated with the destination activity. When the
Contact Palette receives a notification from the implicit

interaction infrastructure that a file has been moved into or

out of the sharing space on the desktop, the palette passes

the full path of the shared file and the e-mail addresses of

the contacts currently associated with the activity to a peer-

to-peer file sharing library originally developed for the

Sharing Palette prototype, which manages replicating the

files across the network initially and whenever modified.

Additionally, the Contact Palette serves as one of the key

bridges between Giornata and the surrounding desktop

ecosystem, connecting to a number of external services and

applications. The palette uses the OS X Address Book

framework to dynamically update the list of contacts that

can be associated with an activity; all contacts in the

Address Book database with an e-mail address are

automatically added to the “Address Book” group within

the palette. The palette also connects to the specified e-mail

client periodically via AppleScript, retrieving a list of

unread messages and updating the palette’s individual and
group icons with badges to provide awareness of electronic

communications most relevant to the current activity.

218

Persistent Technical Challenges
A number of technologies enabled the realization of the

Giornata system with sufficient robustness to support a

long-term deployment: a handle-based and metadata-

focused filesystem (handle-based file referencing allowed

Giornata to move files in and out of the desktop folder

without breaking existing applications); widespread

availability of application scripting tools (to increase the
degree of integration with the operating system and existing

tools); and increased operating system stability and

multiprocessing capabilities (to support a greater number of

concurrent activities over a longer time).

However, a number of significant technical challenges

remained in developing Giornata; these challenges are

likely to frustrate other future efforts to develop and deploy
activity-based systems. First, the fragmentation of

commonly used information resources—first and foremost,

e-mail—make it difficult for activity representations to

adequately capture both local work products and

communicative interactions. Second, developing innovative

interaction techniques for managing open windows is

challenging since the window manager in most mainstream

operating systems is closed-source and offers limited

extensibility. (X11-based systems are one exception,

although prototyping for Linux or UNIX can limit potential

opportunities for studying real system use.) Finally,

activity-based systems still have no way to reliably restore
the internal state of running applications following a

system crash or reboot (also noted previously by Robertson

et al. [23]). Solutions to this problem might include the

development of new programming frameworks requiring

developers to provide hooks for acquiring a snapshot of an

application’s state and restoring it, or, perhaps, the use of

explicit resource virtualization on a per-application level.

DEPLOYMENT AND STUDY
Instead of evaluating Giornata’s interface in a controlled,

laboratory setting, we believed that it was essential to

deploy and study a fully-implemented system to be used in

the context of real-world work for two reasons: we wanted
to investigate how participants organize their own, familiar

resources and collaborations when an activity-based tool is

available, and we felt it critical to observe how long-term

use of the system would reveal emergent strategies for

organizing knowledge work within activities.

We deployed the Giornata prototype to five participants

(two university faculty members, two graduate students,

and one industrial HCI practitioner), who used the system
as part of their everyday work for an average of 54 days

(min = 22 days; max = 82 days). For the deployment, we

instrumented Giornata to log information about all activity-

based interactions. At the conclusion of the deployment, we

asked participants to rate the usefulness of several aspects

of the system and conducted semi-structured interviews

with each of the participants to elicit specific feedback

about their experiences using the software.

Although an in-depth discussion of participants’ use of the

system is beyond the scope of this paper, we present results

highlighting participants’ reactions to several facets of

Giornata’s activity-oriented interface:

• Participants reported having generally positive

experiences using the system, rating its usefulness an

average of 4.1 (SD 0.6) on a 5-point Likert scale.

• Participants logged substantial real-world use of the
system, with an average of 7.6 open activities per

participant over the course of the study (SD 3.5). The

software logs also revealed that the participants

engaged in an average of 28.2 activity switches per day

(SD 15.9). None of the participants reported problems

with the system scaling to meet their needs over the

duration of the deployment.

• The system supported a wide variety of working styles.

Some participants maintained longer lists of fine-

grained activities, while others created only a few, high-

level activities. Some participants concentrated their

personal information management tools in just one
activity, while others intentionally replicated aspects of

these tools across nearly all of their activities.

• When participants did not know how to name an

activity or needed a temporary place to work, Giornata

did not get in their way: 14.8% of all activities created

during the study remained untagged for the entire study.

• Two of the five participants had used other virtual

desktop software in the past. One commented that

keeping his desktops appropriately partitioned had been

a challenge when using these systems and noted “that

can still happen with Giornata, but I think by…binding
specific activities to specific [desktops] has helped with

that…. It may be that there’s not that fixed layout….”

• The per-activity resource storage was frequently cited

as one of the “biggest wins” in using the system. All of

the participants used this feature (to varying degrees),

and most commented that having a place to store files

without having to negotiate the hierarchical filesystem

was valuable. One participant noted that routinely

saving files to the desktop “feels better than filing.”

CONCLUSION
Giornata demonstrates that re-examining the assumptions

underlying the design of the desktop interface can lead to

interfaces that more closely match real-world work
practices than systems based on a traditional, increasingly

dated application- or document-based interaction metaphor.

We anticipate that activity-based systems will provide a

variety of benefits, including better task awareness, simpler

multitasking, more natural organization of information, and

improved collaboration.

In this paper, we presented seven requirements, grounded
in cognitive theory and observations of real-world work,

for foregrounding representations of activity as the primary

organizing principle in the desktop interface. Building on

these requirements, we presented the Giornata interface,

one instantiation of an activity-based system that enhances

the OS X desktop in a number of key areas:

• Giornata supports fluid work practice by explicitly

supporting multitasking, closely integrating with

existing features of the desktop environment and

219

allowing individuals to quickly create and switch

among activities;

• Giornata’s activity representations encapsulate evolving

work based on the integration of per-activity persistent

storage of relevant files and of a lightweight means for

incrementally labeling activities and their constituent
resources using semantically meaningful tags; and

• Giornata supports collaboration through the inclusion

of individuals and groups as first-class objects in

activity representations, providing collaboration

awareness and a lightweight and powerful mechanism

for sharing files and maintaining ongoing collaborations

grounded in a set of shared information artifacts.

ACKNOWLEDGEMENTS
We would like to thank Gregory Abowd, Blair MacIntyre,

and Tom Moran for their feedback on the design of the

Giornata system and the presentation of this research. This

work was supported by Steelcase Inc. and the GVU Center.

REFERENCES
1. Agarwala, A. and Balakrishnan, R. Keepin’ it real: Pushing

the desktop metaphor with physics, piles, and the pen. In
Proc. CHI ’06, ACM Press (2006), 1283–1292.

2. Bannon, L., Cypher, A., Greenspan, S. and Monty, M.L.
Evaluation and analysis of users’ activity organization. In

Proc. CHI ’83, ACM Press (1983), 54–57.

3. Bardram, J.E. Activity-based computing: Support for mobility
and collaboration in ubiquitous computing. Personal and

Ubiquitous Computing 9, 5 (September 2005), 312–322.

4. Beaudouin-Lafon, M. and Lassen, H.M. The architecture and
implementation of CPN2000, a post-WIMP graphical
application. In Proc. UIST 2000, ACM Press (2000), 181–190.

5. Bergman, O., Beyth-Maron, R. and Nachmias, R. The project
fragmentation problem in personal information management.

In Proc. CHI ’06, ACM Press (2006), 271–274.

6. Cadiz, J.J., Venolia, G., Jancke, G. and Gupta, A. Designing
and deploying an information awareness interface. In Proc.

CSCW ’02, ACM Press (2002), 314–323.

7. Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D.B. and Thornton, J.
Extending document management systems with user-specific
active properties. ACM Transactions on Information Systems

18, 2 (April 2000), 140–170.

8. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin,
M., Li, L. and Herlocker, J.L. Tasktracer: A desktop
environment to support multi-tasking knowledge workers. In
Proc. IUI ’05, ACM Press (2005), 75–82.

9. Engeström, Y. Learning by Expanding: An Activity-

Theoretical Approach to Developmental Research. Orienta-
Konsultit Oy, Helsinki, Finland, 1987.

10. Freeman, E. & Fertig, S. Lifestreams: Organizing your
electronic life. In Proc. AAAI Fall Symposium (FS-95-03),
AAAI Press (1995).

11. González, V.M. and Mark, G. “Constant, constant multi-
tasking craziness”: Managing multiple working spheres. In
Proc. CHI ’04, ACM Press (2004), 113–120.

12. Henderson, J.D.A. and Card, S.K. Rooms: The use of multiple
virtual workspaces to reduce space contention in window-
based graphical user interfaces. ACM Transactions on

Graphics 5, 3 (July 1986), 211–241.

13. Jones, W., Klasnja, P., Civan, A. and Adcock, M.L. The

personal project planner: Planning to organize personal
information. In Proc. CHI ’08, ACM Press (2008), 681–684.

14. Kandogan, E. & Schneiderman, B. Elastic windows:
Evaluation of multi-window operations. In Proc. CHI ’97,
ACM Press (1997), 250–257.

15. Kaptelinin, V. UMEA: Translating interaction histories into
project contexts. In Proc. CHI ’03, ACM Press (2003), 353–360.

16. Kidd, A. The marks are on the knowledge worker. In Proc.

CHI ’94, ACM Press (1994), 186–191.

17. MacIntyre, B., Mynatt, E.D., Voida, S., Hansen, K.M., Tullio,

J. and Corso, G.M. Support for multitasking and background
awareness using interactive peripheral displays. In Proc. UIST

’01, ACM Press (2001), 41–50.

18. Malone, T.W. How do people organize their desks?
Implications for the design of office information systems.
ACM Transactions on Office Information Systems 1, 1

(January 1983), 99–112.

19. Mander, R., Salomon, G. and Wong, Y.Y. A ‘pile’ metaphor
for supporting casual organization of information. In Proc.

CHI ’92, ACM Press (1992), 627–634.

20. Muller, M.J., Geyer, W., Brownholtz, B., Wilcox, E. and
Millen, D.R. One-hundred days in an activity-centric
collaboration environment based on shared objects. In Proc.

CHI ’04, ACM Press (2004), 375–382.

21. Park, Y. and Furuta, R. Keeping narratives of a desktop to
enhance continuity of on-going tasks. In Proc. JCDL 2008,
ACM Press (2008), 393–396.

22. Rekimoto, J. Time-machine computing: A time-centric
approach for the information environment. In Proc. UIST ’99,

ACM Press (1999), 45–54.

23. Robertson, G., van Dantzich, M., Robbins, D., Czerwinski,
M., Hinckley, K., Risden, K., Thiel, D. and Gorokhovsky, V.
The Task Gallery: A 3D window manager. In Proc. CHI 2000,
ACM Press (2000), 494–501.

24. Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P.,
Hutchings, D., Meyers, B., Robbins, D. and Smith, G.
Scalable Fabric: Flexible task management. In Proc. AVI ’04,
ACM Press (2004), 85–89.

25. Roseman, M. and Greenberg, S. TeamRooms: Network places for
collaboration. In Proc. CSCW ’96, ACM Press (1996), 325–333.

26. Smith, G., Baudisch, P., Robertson, G., Czerwinski, M.,
Meyers, B., Robbins, D. and Andrews, D. GroupBar: The
TaskBar evolved. In Proc. OZCHI 2003, University of

Queensland, Brisbane, Australia (2003), 34–43.

27. Suchman, L. Plans and Situated Actions: The Problem of

Human-Machine Communication. Cambridge University
Press, Cambridge, UK, 1987.

28. Tang, J.C., Drews, C., Smith, M., Wu, F., Sue, A. and Lau, T.
Exploring patterns of social commonality among file directories
at work. In Proc. CHI ’07, ACM Press (2007), 951–960.

29. Voida, S., Edwards, W.K., Newman, M.W., Grinter, R.E. and

Ducheneaut, N. Share and share alike: Exploring the user
interface affordances of file sharing. In Proc. CHI ’06, ACM
Press (2006), 221–230.

30. Voida, S., Mynatt, E.D. and MacIntyre, B. Supporting activity
in desktop and ubiquitous computing. In Kaptelinin, V. and
Czerwinski, M. (eds.), Beyond the Desktop Metaphor:

Designing Integrated Digital Work Environments. MIT Press,
Cambridge, MA, 2007.

31. Vygotsky, L.S. & Cole, M. Mind in Society: The Development

of Higher Psychological Processes. Harvard University Press,
Cambridge, MA, 1978.

220

