
!!?i?!!HumzmFactorsinComputigSystems CHl’94 * “Ce/ebralingMrdepemletfce”

Nonvisual Presentation of Graphical User Interfaces:

Contrasting Two Approaches

Elizabeth D. Mynatt

Graphics, Visualization and Usability Center

Georgia Institute of Technology

Atlanta, Georgia 30332-0280

404-894-3658

beth@cc.gatech.edu

ABSTRACT
Users who are blind currently have limited access to
graphical user interfaces based on MS Windows or X
Windows. Past access strategies have used speech
synthesizers and braille displays to present text-based
interfaces. Providing access to graphical applications creates
new human interface design challenges which must be
addressed to build intuitive and efficient nonvisual
interfaces. Two conmasting designs have been developed and
implemented in the projects Mercator and GUIB. These
systems differ dramatically in their approaches to providing
nonvisual interfaces to GUIS. This paper discusses four main
interface design issues for access systems, and describes
how the Mercator and GUIB designs have addressed these
issues. It is hoped that the exploration of these interfaces will
lead to better nonvisual interfaces used in low visibility and
visually overloaded environments.

KEYWORDS Nonvisual HCI, blind users, graphical user
interfaces, auditory interfaces, tactile interfaces

INTRODUCTION
Alan Newell’s plenary address at INTERCHI ’93, titled
“CHI for Everyone,” argued that by extending our vision of
interface design to encompass extraordinary users, we would
not be limiting the applicability of our work. Instead, we
would discover and refine new interaction techniques which
would be of use to the general user community. A current
interface design challenge is developing interfaces which
provide access to graphical user interfaces for people who
are blind [1]. Even the goal itself sounds like an oxymoron.
The design issues in translating an interactive, spatially
presented, visually dense interface into an efficient, intuitive
and non-intrusive nonvisual interface are numerous.

Moreover, practical concerns such as using affordable
hardware while providing access to many application
interfaces transparently to the graphical applications adds to
the complexity of the task [18].

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

CH194-4/94 Boston, Massachusetts USA

a 1994 ACM 0-89791-650-6/94/01 66... $3.50

Gerhard Weber

Univershae Stuttgart, Institut fue Informatik,

and F. H. Papenmeier GmbH&Co, KG, Schwerte

Institut fue Informatik, Brehwiesenstr.

20-22,70565 Stuttgart, F.R. Germany

weber@ dia.informatik. uni-stuttgart.de

The typical scenario to providing access to a graphical
interface is as follows: While an unmodified graphical
application is running, an outside agent (or screen reader)
collects information about the application interface by
watching objects drawn to the screen and by monitoring the
application behavior. This screen reader then translates the
graphical interface into a nonvisual interface, not only
translating the graphical presentation into an nonvisual
presentation, but providing different user input mechanisms

as well.

This paper presents two contrasting approaches to GUI
access. The GUIB (Textual and Graphical User Interfaces for
Blind People) Project is a consortium of partners from six
European countries which is developing a prototype
implementation of an access system for MS Whdows and X
Windows [17]. The GUIB design is based on translating the
screen contents into a tactile presentation which is based on
the spatial organization of the graphical interface. GUIB uses
a new input/output device, called GUIDE, which integrates
vertical and horizontal braille displays, two loudspeakers
and a touch-sensitive tablet. This device allows blind users
to experiment with direct manipulation and 2D spatial sound
presentation.

The Mercator project is an interdisciplinary research effort,
at the Georgia Institute of Technology which is exploring
different access strategies for X Windows [10]. Mercator
replaces the spatial graphical display with a hierarchal
auditory interface. Minimizing the use of special-purpose
hardware, Mercator only adds a speech synthesis system to
the standard desktop configuration. Mercator extensively
uses nonspeech auditory cues to convey iconic information
presented in the graphical user interface.

Both approaches recognize many important points. First,
access to graphical user interfaces is a critical concern for the
visually-impaired community. In the past, command-line,
text-based interfaces were accessible through the use of
screen reader software which transmitted text to a speech
synthesizer or a braille display. Now graphical user
interfaces create new barriers to access through the use of
spatially separated windows, icons, and direct manipulation.
Second, both projects recognize the need to design a
complete solution which takes into account not only the
presentation of graphical information, but also interaction

166

Boston,MassachusettsUSAc April24-28,1994

with the nonvisual interface. Previous access system simply
focused on translating the on-screen graphics without
providing new interaction techniques appropriate to the
nonvisual presentation [13].

The designs of Mercator and GUIB are also radically
different. Some of the differences are the result of varying
preferences between U.S. and European users. In North
America, the use of speech synthesizers speaking English is
the de facto standard. In Europe, due to the lack of affordable
speech synthesizers for many languages as well as the
notational imprecision of speech, educational and
rehabilitation efforts are focusing on braille as a standard
notation. Likewise, the two approaches differ on the
inclusion of pointing and direct manipulation in the
nonvisual interface.

In this paper, we summarize the interface design issues
addressed by these systems while noting the overall goals
which influenced our design decisions as well as the tools
and techniques used to implement our designs. Next, we step
through the major design issues and compare our two
approaches. Where possible, we also include data gathered
from formal and informal user evaluations. We conclude by
summarizing the status of our individual efforts as well as

speculating on possible advantages to be giined by
combining our two designs.

DESIGN ISSUES FOR GUI ACCESS
Creating a nonvisual interface which allows a blind user to
interact with a graphical application raises a number of
challenging HCI design issues [3] [14]. These concerns are
briefly introduced below. The remainder of this paper
compares how Mercator and GUIB have handled these
issues in their respective designs.

Coherence between visual and nonvisual interfaces

An overriding concern in access systems is maintaining
coherent, parallel visual and nonvisual interfaces. The
primary reason for this goal is supporting collaboration
between sighted and nonsighted co-workers. For
example, a naive access system could simply translate a
graphical interface into a command line interface. But the
nonsighted user’s mental model of the interface would be
substantially different from the mental model of a sighted
user. Therefore colleagues would not be able to
communicate how to use an application to accomplish a
joint goal.

Not only must the visual and nonvisual interfaces support
the same mental model of the application interface, their
respective presentations must be synchronized to support
joint operation. For example, a sighted user should be
able to “watch” a blind user work with a nonvisual
interface and be able to interact with the visual interface
as well. Likewise a blind user should be able to listen to a
sighted user working with the graphical interface.

Exploration in a nonvisual interface

A significant advantage of graphical user interfaces is the
constant presentation of the interface with sufficient
resolution to display a great deal of information. No

HumarrFactorsinComputingSystems
5?

nonvisual media (audio, tactile displays) are able to
convey as much information due to limited resolution
possibly combined with a serial, dynamic presentation.
Therefore additional functionality is required to support
efficient exploration of the nonvisual interface,

Conveying graphical information in a nonvisual interface

The use of iconic information in graphical user interfaces
is both a boon to sighted users and a barrier to blind
users. The first step in accessing these symbols is to
develop methods to convey interface objects which are
partially identified by their appearance such as buttons
and menus. Next, attributes of these objects, such as
selection state (which would be conveyed graphically
through highlighting, for example), must be presented in
the nonvisual interface. More difficult to translate are
abstract concepts such as sliders and scrollbars which
depend on direct manipulation. A further challenge
remains in translating pure graphics, animations and
multimedia interfaces.

Interaction in a nonvisual interface

The only common denominators between interacting
with graphical and nonvisual interfaces is the use of the
keyboard and generic audio output. All other forms of
interaction with graphical interfaces (visual changes,
pointing, dragging and clicking) need to be replaced or
modified for the nonvisual interface.

Both the GUIB and Mercator projects have addressed these
issues, at times resulting in substantially different designs,
Two major reasons for these contrasting designs are the
prioritization of different interface design goals as well as
the selection of tools and established techniques to
implement the designs.

Many important interface design goals have influenced both
approaches to GUI access. An important criterion for any
access system is the scope of applications made accessible.
Providing access to applications at a per-application basis
would be a frustrating and somewhat useless approach as

new applications appear everyday. Therefore systems must
devise methods to provide access to entire sets of
applications such as all X Windows or Macintosh
applications. The generality and implicit restrictions of these
methods often limits the information available to the
nonvisual interface [4]. Cost is also an important practical
consideration. Special purpose devices expand the scope of
interfaces which can be explored, but are often too costly for
most users.

The learnability of graphical user interfaces must also be
addressed from the perspective of the blind user. Sighted
users and designers of application software have had more
than a decade time to learn about graphical user interfaces,
while blind users were excluded from this development. The
introduction of nonvisual user interfaces for GUIS can be
successful only if an upgrade path from existing technology
and metaphors is provided through the user interface.

A number of tools and techniques are available for the
creation of nonvisual interfaces. For output, speech

167

!%?HummFac(orsinComputingSystems

synthesizers offer various options for controlling the
presentation of speech. Both braille devices for active and
passive reading are often used. Large braille displays are
popular since the user reads the braille by actively moving
their finger against the braille pins as opposed to passively
feeling pins change under their finger. These displays are
often equipped with braille keys to let the user point at
individual characters. Unfortunately, large braille devices are
often expensive. Conversely, the widespread inclusion of
audio hardware in most computers now facilitates the use of
nonspeech auditory cues. Additionally, current research in
the generation of spatial audio provides a new medium for
the creation of nonvisual interfaces[2].

COHERENT VISUAL AND NONVISUAL INTERFACES
Supporting collaboration and interaction between sighted
and nonsighted users motivates the need for coherence
between visual and nonvisual interfaces. First, the users’
mental models of the visual and nonvisual interface must be
reasonably similar to support discussions about an
application interface. Second, the visual and nonvisual
interfaces must b kept “in sync” so that simultaneous
interaction is possible.

Creating A Textual Display
GUIB and Mercator use different interface metaphors as the
basis for the nonvisual presentation. GUIB continues the use
of the spatial metaphor as presented in the graphical
interface. In thk design, the organization of the interface is
based on the spatial location of the objects on the tactile pad
and braille display. This design supports the notion of
translating the graphical interface into a textual display
which can be translated into braille.

Coherence between visual and nonvisual presentation is
ensured by filtering the data generated by the user or by the
user interface. This data is made up of user interface events
such as keyboard input or refreshing the screen. Filtering
takes place on both the lexical level and the syntactical level
of the graphical user interface. For text retrieval, at the
lexical level a virtual screen copy describes, for every pixel
on the screen, the character being displayed to the sighted
user. On the syntactical level, an off-screen model is
implemented through a tree of interaction objects which
includes the virtual screen copy whenever the syntactical
level provides insufficient data The screen reader is written
in an event-response language, called GUIB-ERL [7]. Rules
transform the hierarchical off-screen model into textual
output and, where appropriate, into acoustic media.

Creating A Hierarchical Model
The rationale behind the Mercator design is based on the
premise that they are many features of graphical interfaces
which do not need to be modeled in an auditory interface.
Many of these features are artifacts of the relatively small,
two-dimensional display surfaces typically available to GUIS
and do not add richness to the interaction in the auditory
domain. For example occluded windows and other space
saving techniques can be considered an artifact of the small
display and not an inherent part of the application interface.

Mercator ensures compatibility between the visual and
nonvisurd interfaces by translating the interface at the level
of interface components. For example, if the visual interface
presents menus, dialog boxes and push buttons then the
corresponding auditory interface will also present menus,
dialog boxes and push buttons. Only the presentation of
these objects will vary.

By performing the translation at the level of interface
objects, rather than at a pixel-by-pixel level, the auditory
interface can be unencumbered by limitations of modeling
the graphical interface exactly. Likewise, the user of the
auditory interface is not confused by the inclusion of
information which is simply an artifact of visual
presentation.

Synchronizing The Visual and Nonvisual Interfaces
Both systems ensure that the visual and nonvisual interfaces
are synchronized for parallel interaction. Synchronization is
also achieved in an object oriented manner. For example,
selecting an object in the nonvisual interface results in
warping either the mouse or cursor to that object in the visual
interface.

The GUIB interface also addresses synchronization of the
braille display. Since braille is a fixed-width font, it cannot
present the original layout of characters. As a consequence,
synchronization of mouse movements is required. For
example, if the mouse cursor is moved on the braille display
for a selection within a menu, then the visual presentation
centers the mouse cursor within the selection, and the
nonvisual presentation centers it in turn. This feature also
helps when a frame is to be selected. A frame of a window is
one character wide in braille, and three pixels on the screen.
Knowing the frame size of the window, the screen reader
corrects positioning of the mouse cursor to ensure the
window’s frame is hit on the visual presentation.

Feedback for mouse movements initiated by a sighted
colleague using the normal mouse is recognized by the blind
user as the braille display tracks the mouse movements and
displays it as caret. Cooperation is thus ensured in both
directions, independent of which interface generated the
mouse input.

EXPLORING THE NONVISUAL INTERFACE
Various techniques can be used to compensate for the lack of
overview information. In the GUIB project, a tactile display
is used to provide an overview of large screen objects such
as windows. In the Mercator project, the interface structure
is mapped onto a hierarchical tree-structure which replaces
the spatial organization with a logical organization.

Spatial Exploration
The presentation of GUIB’S off-screen model is guided by a
spatial metaphor since the emphasis for output is on a large
braille display equipped with acoustic facilities for sound
and speech generation and a 25 line by 80 braille characters
canvas. This canvas is sufficiently large enough to display a
640 by 480 pixel screen. Pilot users have prefemed a mode

switching feature: either the complete screen or the current

168

Boston,MassachusettsUSAo April24-28,1994 HumanFactorsinComputingSystems
R?!

application is shown. In the later case, space requirements
are reduced. The display has two keys to explore lines
sequentially upwards or downwards. Additionally, a vertical
tactile display shows four braille pins in a row for each line.
These pins also correspond to braille keys. Detecting a
different line is therefore easier for standard situations as the
location of window frames and icons is indicated through
two of the braille pins. A click on the braille key next to the
verticat indicator activates the presentation of the
corresponding line and thus accelerates exploration of the
screen.

The spatial metaphor combined with pointing allows
efficient use of dialog boxes. While keyboard-based
interaction could require each element to be visited in a step
by step fashion, a typical dialogue box can be presented on 3
to five lines of braille. These lines are scanned by the user
sequential y, and as soon as the desired element is found, it
can be selected (pointing) by clicking a braille key with the
reading finger. A second click on the same braille key
simulates a mouse click and this completes this frequent
action immediately. Pilot users have requested a one-handed
operation for all mouse operations (point, click, double-
click, drag) which is now tested [16]. A double click is a
sequence of one click and a double click on the braille keys.
For one-hand operation, dragging is initiated by a double
click generated at the spot of the mouse (button down). This
mode is reported by acoustic and braille cues. Practice shows
that users then point at the destination of the dragging
operation. A second double click simulates the mouse
movement and the mouse button release. Thereby, common
operations like resizing a window or drag&drop can be
performed effectively.

Tree-Based Exploration
Since Mercator interfaces are derived from an object-based
representation of the user interface, the mechanisms for
exploring the user interface are also based on the same object
model. The goal of this approach is to ensure that each
movement positions the user at a new interface object. With
this approach, there is no dead space, and no sense of falling
between objects in the user interface. Essentially, the
graphical user interface is mapped onto a tree structure
which breaks the user interface down into smaller and
smaller auditory objects. This tree structure is derived from
the conceptual model of the application interface which is
partially determined by the X widget hierarchy. The tree
structure represents hierarchical relationships (this object is a
child of, or contained by, a parent object) as well as dynamic
relationships (selecting this object moves the user to this
object).

To explore the user interface, the user simply traverses the
interface tree structure. When entering an application
interface, a breadth first search exposes the main interface
objects. Conversely, depth-first searches expose more levels
of detail for a portion of the interface. It is worth noting that
existing keyboard shortcuts work within this structure.
L&ewise this scheme is easily extended to accessing
multiple applications.

CONVEYING SYMBOLIC INFORMATION
A significant benefit of graphical interfaces is the use of
icons to convey symbolic information. A basic problem in
providing access to graphical applications is providing
intuitive translations for these graphicat icons. Mercator
incorporates a combination of techniques used to convey
information via nonspeech auditory cues [9], GUIB also uses
nonspeech auditory cues, but relies heavily on translating
symbolic information directly into braille. These approaches
are partially summarized in Table 1: Nonvisuat Presentation
of Interaction Objects

Using Nonspsech Auditory Cues
Mercator uses three levels of nonspeech auditory cues to
convey symbolic information. The first level addresses the
question of “What is this object?” In Mercator, the type of an
interface object is conveyed with an auditory icon. Auditory
icons are sounds designed to trigger associations with
everyday objects [5]. This mapping is easy for interface
components such as trashcan icons, but is less
straightforward for components such as menus and dialog
boxes which are abstract notions and have no innate sound
associated with them. As examples of some of the auditory
icons used in Mercator: touching a window sounds like
tapping on a piece of glass, container objects sound like a
wooden box opening with a creaky hinge, a variety of push
button sounds are used for radio buttons, push buttons and
toggle buttons, and editable text fields sound like an old
fashioned typewriter.

Auditory icons are not limited to simply denoting categories
of events and objects, but can be parametrized to reflect
their relevant dimensions as well [6]. In Mercator, auditory
icons are parametrized to convey icon specific attributes
such as the length of a menu. Often these attributes are not
explicitly presented in the graphical interface, but are simply
part of the graphical presentation.

Another interesting question is how to convey attributes
which are common across different types of interface

objects. For example, the concept of highlighting and
greying-out interface objects is common across push
buttons, generic icons, and windows as well. Ludwig,
Pincever and Cohen [8] suggest that various sound effects or
jiltears can be used to systematically manipulate an auditory
cue without losing the identifiability of the original auditory
cue. For example, an animation filtear produces a more
lively sound by accenting frequency variations while a
muffle filtear produces a duller sound by using a linear, low-
pass filter. The animation tiltear can be used to auditorially
highlight auditory icons while the muffle tiltear can be to
grey-out auditory icons.

A user study was conducted to evaluate the use of nonspeech
auditory cues in Mercator interfaces [11]. Both sighted and
blind subjects participated in a three part series of tests
which evaluated the identifiability, conceptual mapping and

usability of a set of auditory icons and filtears. Although the
auditory icons were readily learned, the initial use and
overall intuitive nature of the interface suffered from the
subjects’ frustration with identi~ing the auditory cues.

169

I
HumanFac(orsinComputingSystems

Table 1: Nonvisual Presentation of Interaction Objects

170

Boston,MassachusettsUSAo April24-28,1994 HumanFactorsinComputingSystems
R

Using Braille Notation
In GUIB, symbolic information is integrated into the braille
code if possible. Each interaction object, in the off-screen
model, is characterized by special characters, e.g. brackets
around push button names. The shape of the braille
characters resembles the graphical appearance wherever
possible. Underlining in braille notation (which is more a
form of strike-through) supports the use of markings.
Thereby text attributes (font, color changes) can be

conveyed to the user. Nevertheless some icons are not
suitable for braille-based presentation. For example, sounds
and speech are used for rapidly changing icons. The shape of
the mouse cursor is recognized in the filtering process and
when it changes, it is verbalized as well as sonified (an hour
glass becomes “please wait” accompanied by several clock
ticks). In this sense the desktop (which is empty space in
braille) is announced through repetitive sounds as for
example a “jungle” sound [15].

INTERACTION IN A NONVISUAL iNTERFACE
Many of the interaction mechanisms in graphical interfaces
do not translate directly to nonvisual interfaces. Especially
problematic is the use of the mouse. Access researchers

disagree on whether mouse input should be part of a
nonvisual interface. In Mercator, mouse input is completely
replaced by keyboru-d interaction. Although a sighted user
can use the mouse while working with a blind colleague, it is
not expected that the blind user will use the mouse as well.
Conversely, one motivation for the GUIDE display was
supporting direct manipulation tasks in the nonvisual
interface [12].

Another important issue is deciding how, and when, to signal
the user when changes on the screen occur. Mercator
provides rules which govern how different objects behave.
These rules specify when changes are presented to the user
via speech and /or nonspeech auditory cues. GUIB provides
addhional tactile cursors which mark portions of the screen
which have changed.

Eliminating Mouse Input
In Mercator, the need for mouse input has been eliminated.
As discussed previously, exploration of the interface can be
accomplished by walking a tree structure representation of
the interface model. These actions are performed through
keyboru-d input. Likewise, keyboard substitutes for mouse
button input are provided. One advantage of this feature is
that the selection mechanism can be the same for all
interface objects independent of what type of mouse input
(single click, double click) is expected.

For GUIDE, two substitutes for the mouse have been
developed [16]. Users can point at every braille character or
touch a pressure-sensitive touch tablet. The touch sensitive
tablet allows the blind users to explore typical direct
manipulation tasks such as pointing and dragging.

Signaling The User
An important question is how to notify the user of changes
on the screen such as the appearance of a dialog box or the
change of button label. Many types of interaction can cause

,..

rapid, and possibly, large changes on the screen. Such
changes are small in case of text editing as only the caret
moves, but switching between applications can cause a large
portion of the screen to change.

Mercator provides rule templates for each type of interface
object in X Windows applications. These templates guide the
behavior of the objects in the nonvisual interface, such as the
manipulation of the nonspeech auditory cues associated with
that type of object. The rules also specify if, and how,
changes to the object should be presented to the user. For
example, a message window in an application interface will
have at least three modes of operation:

. Always present new information via an auditory cue and
synthesized speech

. Signal new information via an auditory cue

● Do not signal the presentation of new information

These modes of operation can be combined in various ways
depending on whether the application is the current focus.
Cues from applications which are not the current focus are
preceded by a cue (speech or nonspeech) which identifies the
sending application. The presentation rules for a particular
object, or set of objects, can also be modified by the user on a
per-application or per-user basis. This flexibility gives the
user a large degree of control over the nonvisual interface.

In GUIB, additional cursors mark changes caused
asynchronously by the application or by the user’s input. A
focus indicator marks the active element of a dialogue box or
the active document of a multi-window editor. A menu
cursor marks the selected option. The GUIDE dkplay then
moves the cursor to the object that changed last. Thereby, if

the depicted interaction object is small, the user is always
informed about any changes on one line of braille.

In case of vertical or horizontal scroll operations, and in
general for window operations, only one line can be
presented. Therefore, for window operations, the window
title is announced verbally through speech output in addition
to the movement of the braille line to the object having the
focus.

CONCLUSIONS
The two projects discussed here have been driven by their
initial assumptions and requirements: Mercator as a low-
cost, audio-oriented system; GUIB as a tactile-oriented
system with added specialized 1/0 devices. As a result, the
different techniques used in designing and implementing
these systems have resulted in dramatically different
nonvisual interfaces.

No one interface medium or tool can satisfy all potential
users. Both of these systems provide much-needed
experience in the area of translating a graphical interface into
a nonviswd medium. We believe that it is possible to learn
from both of these systems, and to select interface
characteristics from each that can be used effectively in
future nonvisual interfaces. In the future, it is likely that
GUIB will use a greater number of nonspeech auditory cues.

171

M HumanFactorsinComputingSystems CHI’940 “Cekbrulinghrterdependence”

Likewise, Mercator will be adding a braille output
component as well.

At a somewhat more abstract level, both Mercator and GUIB
are exploring the space of methodologies for translation of
graphical user interfaces. While both of these projects are
targeted at translating GUIS into nonvisual interfaces to
provide access to visually-impaired users, access is merely
one application of “retargetting,” or translating interface to a
new medium.

For example, a graphical application’s interface could be
retargetted to a completely new medium, such as a touch-
tone telephone. This technique would provide access to
graphical applications for otherwise “normal” users who
happen to be in disabling circumstances (such as not being
present at their graphical monitors). We believe that
exploration of nonvisual media, along with investigation of
different translation techniques, will be crucial to the
development of next-generation toolkits and UIMS’S that
provide true, native interface retargetting.

ACKNOWLEDGEMENTS
The GUIB Project is supported by the Commission of the
European Communities DG XIII under the TIDE Pilot
Action (Technology Initiative for the Disabled and Elderly
Persons).

The Mercator project is a joint effort by the Georgia Tech
Multimedia Computing Group (a part of the Graphics,
Visualization, and Usability Center) and the Center for
Rehabilitation Technology. This work has been sponsored by
the NASA Marshall Space Flight Center (Research Grant
NAGS- 194) and Sun Microsystems Laboratories.

REFERENCES

1. L.H. Boyd, W.L. Boyd, and G.C. Vanderheiden. The

graphical user interface: Crisis, danger and opportunity.

Journal of 14sual Impairment and Blindness, pages 496-
502, December 1990.

2. David Burgess. Low Cost Sound Spatialization. In UIST

’92: The Fijih Annual Symposium on User Interjace

Software and Technology Conference Proceedings,

November 1992.

3. Alistair D. N. Edwards. Modeling blind users’ interac-
tions with an auditoxy computer interface. International

Journal of Man-Machine Studies, pages 575-589, 1989.

4. W. Keith Edwards, Elizabeth D. Mynatt and Tom Rod-

riguez. The Mercator Project: A Nonvisual Interface to

the X Window System. The X Resource. O’Reilly &

Associates, Inc. April 1993.

5. W. W. Gaver. The SonicFinder An interface that uses

auditory icons. Human Computer Interaction, 4:67-94,

1989.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

W. W. Gaver. Synthesizing Auditory Icons. Proceedings

of the 1992 International Conference on Auditory Dis-

play. Addison-Wesley Publishing Company.

Hill, R. D. Supporting concurrency, communication and

synchronization in Human - Computer Interaction - the

Sassafras UIMS, ACM Transactions on Graphics, Vol.

5, No. 3 (1986) 179-210.

Lester F. Ludwig, Natalio Pincever, and Michael Cohen.

Extending the notion of a window system to audio.

Computer, pages 66-72, August 1990.

Elizabeth Mynatt and Keith Edwards. New metaphors

for nonvisual interfaces. In Extraordinary Human-Com-

puter Interaction, 1991. Draft chapter accepted for

upcoming book.

Elizabeth Mynatt and W. Keith Edwards. Mapping

GUIS to Auditory Interfaces. In UIST ’92: The Fijh

Annual Symposium on User Interjace Software and

Technology Conference Proceedings, November 1992.

Elizabeth D. Mynatt. Auditory Presentation of Graphi-

cal User Interfaces. Auditory Presentation of Graphical

User Interfaces. Proceedings of the 1992 lntemational

Conference on Auditory Display. Addison-Wesley Pub-

lishing Company.

Petrie, H; Heinila, J; Ekola, H. (1993) A comparative

evaluation of computer input devices for blind user, in

Proceedings of ECART 2, Stockholm, May 26-28, 1993,

pp. P-II

Schwerdtfeger, Richard S.: Making the GUI talk, BYTE,

Dec 1991, 118-128.

Vanderheiden, G. C.; Boyd, W.; Mendenhall, J.H.; Ford,

K.: Development of a multisensory nonvisual interface

to computers for blind users, in Proceedings of the

Human Factors Society 35th Annual Meeting 1991, pp.

315-318

Weber, G.: Adapting graphical interaction objects for

blind users by integrating braille and speech, in Zagler,

W. (Ed.) Computers for Handicapped Persons, Olden-

burg: Wien, 1992

Weber, G.(1993) Adapting direct manipulation for blind

users, in Ashlund, Stacey et.al (eds.): Adjunct Procee-

dingsof INTERCHI ’93, Addison Wesley, pp. 21-22

Wel.w, G. (1993) Access by blind people to interaction

objects in MS Windows, in Proceedings of ECART 2,

Stockholm, May 26-28, 1993, pp. 2.2

Bryant W. York, editor. Final Report of the Boston Uni-

versity Workshop on Computers and Persons with Dis-

abilities, 1989.

172

