
Recognizing Creative Needs in User Interface Design

Michael Terry, Elizabeth D. Mynatt
Everyday Computing Lab, GVU Center

College of Computing, Georgia Tech
Atlanta, GA 30332

{mterry, mynatt}@cc.gatech.edu

ABSTRACT
The creative process requires experimentation, the exploration of
variations, and the continual evaluation of one’s progress. While
these processes are frequently non-linear and iterative, modern
user interfaces do not explicitly support these practices, and
instead impose a linear progression through tasks that is a poor fit
for creative pursuits. In this paper we use data from three case
studies, and draw upon Schön’s theory of reflection-in-action to
illustrate specific deficiencies in current user interfaces when used
in creative endeavors. We then develop a set of guidelines for user
interface design and demonstrate their application in three designs
intended to support tasks in the domain of image manipulation.
Categories & Subject Descriptors: H.5.2 [User Interfaces] –
graphical user interfaces (GUI), interaction styles; I.3.4 [Graphics
Utilities] – graphics editors
General Terms: Design, Human Factors
Keywords: Creativity, open-ended tasks, non-linear interaction
model, Side Views, on-demand previews, image manipulation
INTRODUCTION
The creative process requires much effort to define, refine, and
realize a creative vision [4, 13, 14]. As computational systems
increasingly enter into the creative process, end-users, developers,
and researchers strive to understand and define the ways these
systems can support and enhance the creative process. For
example, Shneiderman outlines a number of high-level user
interface guidelines intended to support innovation, such as
“what-if” tools or histories that can be recorded, reviewed, and
replayed [14], while other work investigates specific systems that
target certain aspects of the creative process, such as the
collaborative nature of creative work [11], or the early, formative
stages of design (e.g., [6, 9]).
The work we discuss in this paper seeks to support the creative
process in the moment-to-moment interactions a user has with the
user interface as she acts on her data. Accordingly, our focus is on
the lower-level interactions likely to be found in the use of any
tool, such as the act of choosing a command and its parameters,
branching to explore variations in depth, and evaluating one’s
current position to understand what to do next.
In this paper we report on ongoing research to support the creative
process in the domain of image manipulation. We begin with
three case studies that serve to demonstrate typical needs of users

as they progress through open-ended tasks. These studies clearly
affirm the need for the user to be able to experiment; to explore
variations; and to evaluate past, current, and potential future
states. These processes closely parallel those described by
Schön’s theory of reflection-in-action [13], which we use to frame
our observations and to further our understanding of what is
required to support progression through an open-ended task.
We then turn to an analysis of the ways interfaces support or
hinder creative processes. We find that user interfaces often fall
short of explicitly supporting the experimental, non-serial nature
of the creative process, and instead impose a fairly restrictive
interaction model that we term the Single State Document Model.
The Single State Document Model requires a document to be in
one, and only one, state at any particular time, thereby imposing a
serial, linear progression through a task that is at odds with the
“messy,” highly iterative creative process.
From the unsatisfied needs of users, we synthesize guidelines for
user interface design, referring to related efforts in the process.
Three designs illustrate application of these guidelines: Side
Views, on-demand previews of commands that appear within a
tool-tip’s pop-up window; Parameter Spectrums, a tool for
choosing parameters that shows a spectrum of previews for a
parameter’s range of values; and the Design Horizon, a workspace
that explicitly supports multiple versions of a document, multiple
views on data, and previews of potential future states. We
conclude with initial reactions to functional and paper prototypes
of our designs, and future work.
IMAGE MANIPULATION: THREE CASE STUDIES
The three case studies below illustrate typical work practices of
users engaged in open-ended tasks using a popular image
manipulation application. These studies serve to highlight user
needs in open-ended tasks, thus suggesting opportunities for
interface design.
Each study consisted of an interview to understand individual
work practices, followed by the interviewee demonstrating one of
their typical tasks.
Newspaper Image Control Desk: Image Toning
Our first case study centers on the task of image toning (i.e., color
correction) at a newspaper. A former employee of a major
newspaper described the task of preparing photos for the
newspaper’s printing press at the newspaper’s image control desk,
and demonstrated the process on a sample image.
The image control desk’s charter is to improve the quality of the
images before printing, without altering their editorial content.
This process includes cropping and sizing the image, and
adjusting its colors to make the photo print well on newsprint.
Because newsprint tends to soak up ink in unique ways, new
employees must continually monitor how their images print the
next day, to cater their toning process to the newspaper’s printing
press and paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

C&C’02, October 14–16, 2002, Loughborough, Leic, United Kingdom.
Copyright 2002 ACM 1-58113-465-7/02/0010…$5.00.

38

To achieve consistent results, employees rely on a set of color-
toning heuristics they develop through experience. An
overarching goal in the process is to apply as few changes as
possible, because each change causes original pixel data to be lost.
Therefore, individual operations must be chosen with care so that
the total number of operations is minimized: Each operation
should contribute as much as possible toward a better image,
without causing side-effects that make subsequent corrections
difficult or impossible. These constraints necessitate a highly
iterative process that often requires users to try out several
different approaches to achieve the best result. Employees thus
make back-up copies of their work as they go along to allow them
to branch and explore possibilities in depth.
As part of the iterative process, each operation is evaluated in a
number of ways after it is executed. “Undo” and “redo” are
repeatedly invoked in quick succession to “flash” the current and
previous versions of the image on the screen. This technique
enables comparisons to be made in time, rather than in space (i.e.,
side by side). Users also “zoom in” and pan the image to analyze
specific portions of the image in detail. If the specific portions are
acceptable, users will then zoom out to perform a more holistic
analysis of the effect of the most recent command. At times they
will also evaluate their work by examining the separate color
channels of an image. Collectively, these techniques enable users
to evaluate the results of their actions at different scales, varying
levels of detail, and via multiple representations.
When results prove unsatisfactory, users undo to the previous
version, unless they believe their current strategy seems to have
hit a dead end, in which case they will restore a previously saved
version.
Interactive, Multimedia Software: User Interface Design
Our second case study looks at how a professional artist uses the
image manipulation program to help produce interactive,
multimedia websites and CD-ROMs. Like the newspaper
employee, a part of her work deals with image toning and
preparing images for use in interactive software. In this case
study, however, we focus on the portion of her work involving the
design of graphical user interfaces.
When designing interfaces, the artist uses the image manipulation
application primarily as a drawing and painting program.
Typically, her process consists of creating a large, blank canvas
and drawing a number of variations of particular components
(such as buttons) side-by-side on the same canvas. The variations
enable her to discover and develop the right “look and feel” for
the particular project, and their side-by-side placements on the
canvas enable direct comparisons. The art director with whom she
works also creates variations of her work, but uses a different
mechanism to contain the variations. Rather than create a large
canvas, she creates new layers in the document to hold each
version, and selectively makes layers visible to toggle between
versions. Accordingly, multiple versions cannot be compared
side-by-side, but the use of layers enables different versions to be
quickly switched in and out within the context of the larger
product.
Once the variations have been generated, the artist meets with the
art director to discuss and choose promising versions to be
developed further. From these individual elements a coherent
interface is created, but like the earlier versions, this composite
interface undergoes more changes before arriving at a final state.
To support experimentation at these stages, the artist and her art
director again utilize extra layers in the image, but also duplicate
files to hold the multiple versions. Thus, these users explicitly

generate variations and store them in large canvases, multiple
layers, and multiple files.
Amateur Artist: Pen Drawing Coloring Before Painting
Wood
Our final case study follows an amateur artist using the image
manipulation application to color a scanned-in pen drawing of a
science-fiction scene. His goal is to decide on a color scheme
before using real paints to paint a wood cutout based on the
drawing. Since he has little experience painting in color, he is
using the image manipulation program to help him iterate through
variations before committing to using real paints. Unlike users in
the previous case studies, he is a novice user of the program.
To paint the pen-drawing, the artist uses the application to fill
regions with a color. His process entails applying a color to a
region or set of regions, then sitting back and evaluating the
changes. If they prove satisfactory, he continues; otherwise, he
undoes the operation and tries another variation. At times he also
prints out a grayscale version of the image to reflect on the overall
contrast of the image; this practice provides him with another
representation of his work for the purpose of evaluation.
Like the users in the other case studies, the artist creates multiple
versions by copying files. His file system reflects this process of
experimentation: folders are labeled with the type of experiment
(e.g., grayscale-only, versions based on a palette used by Matisse,
etc.) and files are named according to version number.
UNDERSTANDING USER PRACTICES IN LIGHT OF
SCHÖN’S THEORY OF REFLECTION-IN-ACTION
Our observations of the three users and their work practices echo
the work practices described by Schön in his theory of reflection-
in-action [13]. Reflection-in-action refers to the process by which
skilled practitioners tackle an open-ended problem, and can
roughly be described by the following steps: a framing of the
problem (i.e., an attempt to understand and define the problem),
making a move (acting on the framed problem), reflecting on the
move (evaluating the consequences and implications of the
move), and repeating the entire process. What is noteworthy in
this theory is the notion that a practitioner does not apply a
standard approach to a problem. Rather, he calls upon a repertoire
of past experiences to derive an initial hypothesis, which he tests
with small experiments and actions. Furthermore, as he makes a
move, he simultaneously transforms the problem into a more
desirable state while generating new understandings of the
situation by the way it reacts to the move. As Schön puts it, he
enters into a conversation with the problem, making a move,
analyzing how it “talks back” to him, and responding accordingly.
The case studies revealed many instances of reflection-in-action.
In particular, we noted users experimenting to better understand
the problem and their available options; generating variations to
approach the problem from multiple angles; and continually
evaluating their efforts to reflect on their progress and inform
their future actions. We discuss each of these activities in more
detail now.
Near-Term Experimentation
When faced with an open-ended task, users need to engage in
near-term experimentation, which we define as those efforts
intended to discover and instantiate the next move. In many cases,
users don’t know exactly which command to invoke, nor the best
parameters for the chosen command, so they must experiment.
This experimentation can take the form of trying and undoing
multiple commands, or scanning or tweaking a command’s
parameters.

39

In our case studies, near-term experimentation played a vital role
in individual tasks. Image toning, especially, requires users to
experiment with various commands and settings before finding an
optimal action that moves them closer to their goal, without
causing unnecessary side-effects.
This near-term experimentation closely resembles the process of
reflection-in-action as Schön describes it. Users would make a
hypothesis about what to do next, and test their hypothesis by
invoking a command and adjusting its settings to achieve the
imagined effect. As the command’s effect became known to the
user (either through a command invocation or a preview), the user
would either accept the command, tweak the parameters more, or
undo it and try another tact. It is important to note that all users,
not just novice users, needed to engage in experimentation with
commands and their settings – their tasks were not ones that lent
themselves to a simple application of predetermined actions.
Variations
While near-term experimentation aids the user in choosing and
applying commands, there are times when deeper exploration of
alternatives is warranted. The artist designing user interface
elements in our study is one example: the artist would generate
multiple variations of a specific component by creating them side-
by-side on a large canvas, confer with the art director, and iterate
on promising versions to arrive at an acceptable solution.
Similarly, the artist who was painting a line drawing created
various thematic colorations of his line drawing, and grouped
these together in named folders in the file system.
Users generate variations sequentially (fully developing one
before creating another), or in parallel (working through the steps
of creating alternatives at the same time). In our observations, it
seemed that when individual files were used to hold variations,
they were produced sequentially, while variations “in place” (i.e.,
in the same document), were more likely to occur in parallel.
Generating variations enables the individual to better understand
the problem, its boundaries, and potential solutions. This practice
is a common methodology in the design, as it enables an
individual to engage in what Schön describes as a “conversation”
with the materials and the problem.
Evaluation
As users progress through their task, they need to evaluate their
progress. Evaluation happens in both the short- and long-term, for
example after performing a near-term experiment, or in the
process of generating variations. Though evaluation is a critical
aspect of both near-term experiments and the generation of
variations, we list this activity independently because of its
prominence in our observations.
The users in our case studies performed critical evaluations at
every step of their work. In image toning, users would invoke a
command, then examine the entire image in detail after the
command’s application. Sometimes users would evaluate the
result on its own, with nothing to compare to, but more frequently
they would quickly undo/redo the action to compare the result in
time. They would also, on occasion, load a previous version in a
separate window to perform direct comparisons between versions
further separated in time.
Users would also evaluate their moves through various
representations. The representations serve to emphasize certain
aspects of their current state, or to provide alternative views into
the document. For example, the amateur artist used grayscale
printouts to suppress colors when evaluating the contrast. In

image toning, separate color channels would be examined to
provide an alternative view of the current image.
The evaluative process gives the problem the chance to “talk
back” to the person. It is the moment in which the individual
reassesses the problem and their understanding of it, before
making the next move.
Supporting the Process of Reflection-in-Action
Schön points to a number of tools employed by a practitioner to
support reflection-in-action. We note two here, virtual worlds, and
multiple representations.
Schön describes the use of a “virtual world,” within which the
practitioner can easily generate and test hypotheses: “Virtual
worlds are contexts for experiment within which practitioners can
suspend or control some of the everyday impediments to rigorous
reflection-in-action.” [13, p. 162] In our studies, the use of a large
canvas or extra layers to hold multiple versions both serve as
virtual worlds for the users.
Schön also observes that practitioners make use of various
representations of the problem. These alternative representations
let a person focus on some details, while ignoring others. We
noticed use of alternative representations by the amateur artist
when he created printouts, or when individuals examined their
work using separate color channels.
SUPPORTING AND HINDERING MOMENT-TO-MOMENT
INTERACTIONS
In this section, we provide concrete examples of the ways user
interfaces support or hinder the processes of near-term
experimentation, the generation of variations, and evaluation. We
first discuss the Single State Document Model, an interaction
model that strongly influences the way the user progresses
through a task when using a user interface.
The Single State Document Model
We define the Single State Document Model as the interaction
model that recognizes and requires a document to be in one, and
only one, state at any particular time. This model necessitates a
serial, linear progression through a task where each step replaces
the current state with a new state.
While most user interfaces implement a version of this interaction
model, it is typically a poor match to the non-linear, experimental
processes characteristic of creative endeavors. Although it is
difficult to analyze the evolution of user interfaces, a likely
explanation for the mismatch between many content-creation
tools and the process of open-ended exploration is the narrow
interpretation of task analysis in the design of user interfaces. The
decomposition of a task into its sequential steps is evident in
many user interfaces, for example, a wizard interface that leads
the novice user through a series of steps. However, taken too
literally, these interfaces disregard the iterative and exploratory
processes that make up creative processes. They are over-tuned to
production tasks.
The poor fit of this interaction model to desired work practices
causes users to develop specialized strategies to compensate for
deficiencies in the interface. For example, users must make copies
of their documents to support the generation of variations. We
will see other instances of the Single State Document Model
asserting itself as we discuss each activity in turn.
User Interfaces and Near-Term Experimentation
In Support of Near-Term Experimentation
Near-term experimentation is comprised of choosing a command
and its parameters, and evaluating the effect of the command.

40

User interfaces facilitate the process of choosing a command
through a hierarchical organization of text-based menu commands
grouped according to functionality. Icons on toolbars or palettes
provide compact, abstract visual representations of a command,
while online help, such as tool-tips or contextual help, offer
additional hints when selecting a command.
The capability to “undo” enables users to experiment with the
knowledge that they can easily revert to a previous state if the
experiment fails. Similarly, when multiple, competing alternatives
exist (i.e., the user identifies more than one way to approach a
problem), undo allows users to sequentially try and undo
commands to find the best one.
Interactive previews assist when choosing parameters. Controls
that afford direct manipulation (e.g., a slider widget, rather than a
numerical input box) create a tight feedback loop useful for
finding the “sweet spots” for a particular parameter. This form of
experimentation is much faster than trying and undoing
commands.
Limitations in Support of Near-Term Experimentation
Existing user interface designs allow users to discover commands,
but the terse textual descriptions and compact icons do not
accurately convey a command’s precise effect. When a user is
unfamiliar with a command or the interface, they must enter a try-
undo cycle for the sake of discovering the available functionality.
This try-undo cycle is distinct from the acts of trying and undoing
a command in the process of reflection-in-action: The former case
serves to uncover an interface’s functionality (because it is not
adequately conveyed by the user interface), while the latter case is
an experiment.
When faced with competing alternatives, the Single State
Document Model makes it difficult to make comparisons because
only one command may be invoked at a time. Thus, users must
engage in the try-undo cycle to successively try/undo commands,
mentally noting their respective effects. Alternatively, users must
explicitly create copies of their data to create multiple versions on
which they can apply the desired commands. These limitations
impose additional burdens on users, and reduce the likelihood of
users performing near-term experiments.
Comparisons between previews (when available) is also difficult
in current interfaces because many commands have parameters
that generate a large space of possibilities to consider. For
example, a dialog box that has two parameters each spanning 100
discrete values creates 10,000 different possible combinations.
However, with only one preview into the total number of
possibilities, users must scan the ranges of values to find desirable
combinations.
Finally, while previews are often available for commands with
dialog boxes, few to no previews are available for interactive,
direct manipulation tools, such as the paintbrush. While some
guides may be present (such as an outline for the cursor indicating
the brush size) users are offered no other preview of the effect
such a tool will have until they operate directly on their data.
Furthermore, parameters cannot be varied once interaction has
begun (a notable exception is a pressure-sensitive drawing tablet
which translates pressure into the intensity of applied effect).
These restrictions make it difficult for true reflection-in-action,
because the user must first contend with setting the parameters as
originally desired, before analyzing the effect of their actions.
Towards Better Support of Near-Term Experimentation
User interfaces should provide unambiguous, authentic
representations (e.g., previews) of available commands before the

user has to actually commit to invoking the command.
Furthermore, these previews should afford comparisons, to aid the
user when faced with competing alternatives. Because screen real
estate is limited, these previews can appear on demand.
To assist users in selecting parameters, interfaces should provide a
set of views into the space of possibilities, rather than a single
preview. Two complimentary approaches seem possible:
presenting an evenly distributed spectrum representing a
parameter’s range of values, or presenting the parameter space in
a semantically meaningful way. For example, an initial view into
a parameter space could show the points most likely of interest to
the user. Design Galleries [10] is a system that does just that. For
its target tasks (e.g., lighting a 3D scene), it will search the space
of possibilities to find a set of images perceptibly distinct from
one another. The user simply needs to choose the one most similar
to the effect desired, which he can then fine-tune to his needs.
Interfaces should offer a dedicated space in which to perform
near-term experiments, without needing to modify the document
nor its data. This capability is sometimes called a “what-if” tool,
but use of this term has usually referred to larger experiments,
such as simulations [14]. Instead, this space should be an
instantiation of what Schön calls a virtual world, a place to test
out hypotheses. VisualAge for Java [1], and the ART system [12]
both provide such spaces, the former to test out snippets of Java
code, the latter to work on composing and arranging elements of a
document. Such experimental spaces lower perceived risks of
“trying something out,” thereby encouraging experimentation.
Some input devices, like a pen and tablet, allow the user to
interactively vary some settings for direct manipulation tools as
they are used. Extending this capability to all tools, without
requiring a specialized input device, would help remove the
guesswork of choosing settings for these tools, and enable
reflection-in-action. Furthermore, allowing the user to change the
parameters after-the-fact would remove the need to undo and
retrace one’s work. Editable Graphical Histories [8] is one system
that demonstrates this capability: Users are presented with a
graphical history of their actions and can modify past steps in
place, without needing to undo to a previous state.
User Interfaces and Variations
In Support of Variations
Mechanisms that let users duplicate their data, such as the “Save
As” command (which creates a copy of their current document)
implicitly support the generation of variations. Users can copy
their data, then act on each copy independently to create
variations.
Variations can also be explored in place (i.e., side-by-side in a
document) if the application’s document space can grow
indefinitely. For example, users in our case study used multiple
layers in the document to hold variations, or created a large
enough canvas to hold multiple versions.
“Undo” enables a transient form of exploring variations. Users
can go down a path, and if unsatisfied, they can undo to a
previous state.
Limitations in Support of Variations
Most user interfaces do not explicitly support the process of
branching, and the Single State Document Model does not allow a
document to be in more than one state at a time. While duplicating
files through the file system or version control software may
enable multiple versions to co-exist, interfaces still treat each as a
separate, self-contained entity.

41

Using “undo” to generate variations is problematic because of its
transient nature: only one version exists at a time, so direct
comparisons are not possible unless the user saves copies in the
process.
Towards Better Support of Variations
Variations may come about intentionally (e.g., creating several
versions next to one another in a document), or unexpectedly
(e.g., in the course of working, the user reaches a point and
decides it would be worthwhile to back up and try another
strategy). Accordingly, interface support for variations should
recognize these two ways of generating multiple versions.
Interfaces should allow extra spaces to be created on demand to
hold multiple versions of a document, or portions of it. For
example, one can imagine working on a problematic paragraph in
a word processor and creating a space to hold a new version right
next to the original paragraph. All versions would be accessible
while editing, though only one designated version would appear in
formal representations (such as a printout). This capability can
already be found in the image manipulation program we analyzed,
as well as experimental systems like ART [12]. ART allows
multiple versions of elements of a document to exist; layers
signify which elements appear in the final version.
User interfaces should capture users’ actions, make these histories
persistent, and provide tools to search and navigate past states. A
large body of work already exists analyzing how to enhance
histories (e.g., [2, 5, 8]), but the challenge for supporting
variations is to provide tools that enable a user to easily traverse
histories and to reload multiple versions at the same time
(something not possible in the Single State Document Model).
Recent work on an enhanced history system for website design
moves us closer to this possibility [7].
User Interfaces and Evaluations
In Support of Evaluations
User interfaces support evaluations through multiple perspectives
and views, such as different levels of zoom, and through
alternative representations, such as separate color channels. These
evaluations can happen alone, or in comparison to something else
(such as another document, or a previous version). For example,
we mentioned that a favorite technique of users was to use
“undo/redo” quickly in succession to compare the current and the
prior state.
Limitations in Support of Evaluations
The biggest hindrance we noted to performing evaluations in
current user interfaces was the inability to easily perform side-by-
side comparisons of multiple versions or representations of a
document. Since the Single State Document Model restricts the
user to only one version of a document at a time, side-by-side
comparisons necessitate the user making copies of their
document.
Evaluation is also hindered when it requires the user to change
their data to achieve an alternative representation. For example,
the amateur artist was unable to view his painting in grayscale
unless he invoked a command to remove the colors, or printed out
a copy on a black and white printer.
Towards Better Support of Evaluations
Alternative representations are a critical component to the
evaluative process of reflection-in-action. Interfaces should thus
allow the user to create multiple views and representations of their
data, in its current, past, and potential future states. For example,
users should be able to preview multiple commands at the same

time, to help choose the best one. These additional views should
be persistent, when required, and dynamically update as the user
acts on the document. Furthermore, alternative views should not
require users to change the state of their data to achieve the new
view.
Magic Lenses [3] is an example of a user interface tool that
provides these types of capabilities. Each lens represents a
specific function: As users pass a lens over their data, the view of
their data is transformed by the function represented by the lens.

Users can thus peer into the future and evaluate how their data
may be modified, without actually invoking a command.
DESIGNS
The three designs presented below demonstrate the application of
the guidelines developed in the last section. As we are motivated
to develop systems that can have immediate value to real users,
our designs are conservative in some respects to aid in the
integration with existing applications and work practices. For
example, they assume a basic WIMP interaction model, but are
not tied to, nor limited by it. We present the three designs
separately, though together they form a complete system.
Side Views
Side Views are enhanced tool-tips that preview the result of
invoking a command within the tool-tip pop-up window. The
command is shown applied to a copy of the working data,
providing an authentic forecast of a command’s effect, rather than
a generic, “canned” preview. As an example, when the tool-tip for
the “Bold” command appears in a word processing application,
the Side View shows the selected text with bold formatting
applied in the tool-tip window, instead of just the command’s
name (see Figure 1).
Previews are also displayed when passing over controls that can
be directly manipulated. For example, as the user moves her
cursor over the range of values represented by a slider, the Side
View appears to show a preview of the value under the cursor. To
support side-by-side comparisons, the most recent Side View
remains visible when a new Side View appears.
Side Views serve to support near-term experimentation and
evaluation by displaying authentic previews of potential future
states. Users gain an unambiguous view of how a command will
affect their data, can understand potential side-effects associated
with invoking a command, and can more easily choose among
competing alternatives. Furthermore, Side Views preserve
existing strategies of representing commands and options (e.g.,
through text-based menus), while providing more informative
displays on demand.

Figure 1. Side Views provide a preview of a command
using a copy of the data to be affected. In this figure, a
preview of “bold” is shown in a word processor

42

Figure 3. Parameter Spectrums for customizing an oval.
The user clicks on the desired width, and the previews for
the thickness and height parameters update their previews
to reflect the new width

Parameter Spectrums
Parameter Spectrums are snap-in replacements for traditional
slider controls and previews. Instead of a single preview,
Parameter Spectrums create a spectrum of previews over the
range of values for a parameter. Figure 2 displays an example of a
Parameter Spectrum for a parameter that varies the width of an
oval.
A Parameter Spectrum is comprised of a traditional slider widget,
a series of previews above the slider, and bounding controls that
vary the portion of the parameter range previewed. When the
Parameter Spectrum first appears, the spectrum shows an even
interpolation of values across all possible values for a parameter.
Through user interaction, the boundaries can be adjusted to show
a specific range of values. For example, if the user clicks on one
of the previews, the value associated with that preview becomes
the new chosen value, and the neighbors of the selected preview
“push out” to the edges of the spectrum to form the new
boundaries for the range displayed (see Figure 3). The effect is
akin to “zooming” in to see a finer interpolation of values around
a chosen value. The user may also manually adjust the bounding
controls to vary the portion of the parameter showed within the
spectrum.
Multiple parameters are represented by their own Parameter
Spectrum. Each spectrum varies only in the dimension
represented by the parameter. For example, in Figure 3, the
parameters for the thickness, width, and height of an oval all vary
only in their respective dimensions. When the user chooses a new
value for any of the parameters, the other Parameter Spectrums
update their previews to reflect the newly chosen value. This
behavior enables users to more clearly visualize the interrelations
between parameters.
Parameter Spectrums support near-term experimentation and
facilitate evaluations as the user formulates her next move.
Design Horizon
The Design Horizon is a space intended to complement the
“normal” document window, and is ideally located in a second
monitor. Within this space users can place snapshots of their work
to support the creation of variations. Persistent, dynamic views of
their data can also be placed there. These active views can either
be alternative representations of their data (e.g., zoomed-in
views), or Parameter Spectrums for user-chosen commands (see
Figure 4).
The Design Horizon’s main area is a “global” space whose
contents persist across documents and sessions. Dynamic views in
this global space continually update their views to reflect the
active document and its current state. Each file also creates its
own workspace within the Design Horizon’s global workspace;
the file’s workspace and its contents open and close with the file.
Dynamic views in a file’s workspace are tied to the current

version of that document, rather than the active document in the
application.
Users add commands or snapshots to the Design Horizon by
dragging and dropping them in the desired workspace (i.e., the
global or file workspace). Double-clicking a snapshot or a
Parameter Spectrum loads the document or Parameter Spectrum,
respectively. Users can also interact with the Parameter Spectrum
directly in the Design Horizon and apply its effect, if desired.
The Design Horizon intends to support the non-linear nature of
creative endeavors without losing the conceptually simple model
of the Single State Document Model: The Design Horizon
compliments the Single State Document Model by creating a
space specifically intended to hold multiple versions, and to
display multiple views of potential future states (through the
Parameter Spectrums). Users can thus manipulate their data and
see how their document would change if any of the commands
represented by the Parameter Spectrums were applied. The ability
to place persistent views of commands on the Design Horizon also

Figure 2. A Parameter Spectrum that varies the width of an
oval. The center knob on the slider varies the value, while
the triangles on the ends can be moved to vary the range of
values displayed

Figure 4. Design Horizon 1) Multiple views onto the
active document 2) A Parameter Spectrum showing
potential settings for a direct manipulation tool (dodge) 3)
Workspace tied to a specific file 4) Parameter Spectrum
for “photocopy” filter, tide to a specific file 5) Snapshot
stored with a specific file

43

allows users to customize their workspace with the most
frequently used commands.
FUTURE WORK
We are in the process of implementing and evaluating an
enhanced version of Side Views (see [15]) that incorporates many
of the ideas presented in the three individual designs discussed in
this paper into a single tool. This implementation is within an
image manipulation application based on the open-source GNU
Image Manipulation Program (http://www.gimp.org). Initial
reactions to working versions have been positive, but more
thorough testing of this new user interface mechanism is needed
to understand its specific strengths and weaknesses in real-world
use.
REFERENCES
1. IBM VisualAge for Java.

http://www.ibm.com/software/ad/vajava/
2. Berlage, T. A Selective Undo Mechanism for Graphical User

Interfaces Based on Command Objects. In ACM Transactions
on Computer-Human Interaction (TOCHI), Vol. 1., Issue 3
(September 1994). pp. 269-294

3. Bier, E., Stone, M., Pier, K., Buxton, W., & DeRose, T.
Toolglass and Magic Lenses: The See-Through Interface. In
Proceedings of the 20th Annual Conference on Computer
Graphics, August 1993, pp. 73-80.

4. Csikszentmihalyi, M. Creativity: Flow and the Psychology of
Discovery and Invention. HarperCollins Publishers, New
York, NY. 1999.

5. Edwards, K., Igarashi, T., LaMarca, A., and Mynatt, E. D. A
Temporal Model for Multi-Level Undo and Redo. In
Proceedings of the 13th Annual ACM Symposium on User
Interface Software and Technology, November 2000, pp. 31-
40.

6. Klemmer, S.R., Newman, M., Farrell, R., Bilezikjian, M., &
Landay, J. The Designer’s Outpost: A Tangible Interface for
Collaborative Web Site Design. In CHI Letters, The 14th
Annual ACM Symposium on User Interface Software and
Technology: UIST 2001. 3(2), pp. 1-10.

7. Klemmer, S.R., M. Thomsen, E. Phelps-Goodman, R. Lee,
J.A. Landay, Where Do Web Sites Come From? Capturing
and Interacting with Design History. CHI Letters, Human
Factors in Computing Systems: CHI2002. 4(1).

8. Kurlander, D., and Feiner, S. A Visual Language for
Browsing, Undoing, and Redoing Graphical Interface
Commands. In Visual Languages and Visual Programming.
S.K. Chang (ed.). Plenum Press, New York, NY., 1990, pp.
257-275.

9. Landay, J., and Myers, B. Sketching Interfaces: Toward More
Human Interface Design. In IEEE Computer, 34(3), March
2001, pp. 56-64.

10. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H.,
Ruml, W., Ryall, K., Seims, J., & Shieber, S. Design
Galleries. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, August 1997,
pp. 389-400.

11. Nakakoji, K., Yamamoto, Y., & Ohira, M. A Framework that
Supports Collective Creativity in Design using Visual Images.
In Proceedings of the Third Conference on Creativity and
Cognition, October 1999, pp. 166-173.

12. Nakakoji, K., Yamamoto, Y., Takada, S., & Reeves, B. Two-
Dimensional Spatial Positioning as a Means for Reflection in
Design. In Conference Proceedings on Designing Interaction
Systems (DIS ’00). ACM Press, pp. 145-154.

13. Schön, D. A. The Reflective Practitioner: How Professionals
Think in Action. Basic Books, NY. 1983.

14. Shneiderman, B. Creating Creativity: User Interfaces for
Supporting Innovation. In ACM Transactions on Computer-
Human Interaction, Vol. 7., No. 1, March 2000, pp. 114-138.

15. Terry, M., Mynatt, E. Side Views: Persistent, On-Demand
Previews for Open-Ended Tasks. To appear in Conference
Proceedings of UIST, 2002.

44

