
0272-1716/00/$10.00 © 2000 IEEE

Large Displays

Designing an
Augmented
Writing Surface

IEEE Computer Graphics and Applications 55

At Xerox Palo Alto Research Center
(PARC), we’re investigating strategies for

augmenting the individual office environment. In mak-
ing this distinction, we envision the principally private
space of an individual employee. Despite experiments
with “hoteling” and other depersonalized environ-
ments, the use of personal spaces remains the norm for
many cultures. Our goal is to blur the boundaries
between the physical and virtual realms by augment-
ing common office tools with computational capabili-
ties. One design goal underlying this approach is to
retain the natural affordances of the existing tool, even
if this constraint requires limiting the features or com-
plexity of the augmented tool.

We’re currently focusing on extending the common
office whiteboard—a ubiquitous writing surface typi-
cally hung on office walls. We envision replacing the
whiteboard with a touch-sensitive surface, “colored”
stylus makers, and video projection, but first we want-
ed to understand the typical uses and affordances of
office whiteboards. Although whiteboard and wallboard
use have been studied in other settings1,2 such as meet-
ing rooms, classrooms, and production environments,
our initial observations indicated that whiteboard use
in the office differed from its use in more public spaces:

■ In contrast to meeting room or production environ-
ments, office whiteboards tend to be used for a het-
erogeneous set of tasks in parallel.

■ Whiteboard content seems to group in natural clus-
ters or segments. These segments may correspond to
different tasks, different people, or writing at differ-
ent points in time.

■ Personal whiteboard content in particular seems
heavily context-dependent. Whether it is a seven-digit
number or a list of items, the user must remember
why and when it was written. Likewise the content
may be incomplete, with just enough information pre-
sent for the user to remember the missing data.

These characteristics—thinking or preproduction
tasks, everyday content, and clusters of persistent and
short-lived content—underlie our model of informal

whiteboard use in an individual office. This use of white-
boards remains distinct from the use of desktop com-
puters. Moreover, it still varies significantly from the use
of personal, pen-input devices given a whiteboard’s pub-
lic role and large, continually visible surface.

Studying whiteboard use
Using observational data and interviews, we collect-

ed information about personal
whiteboard use in the research lab
environment at Xerox PARC. We had
a diversity of participants, ranging
from senior managers to visiting
researchers and support personnel.
We took daily photographs of office
whiteboards for approximately two
weeks. The snapshots provided use-
ful clues in understanding how
whiteboard content changes on a
day-to-day basis. Although we often
found it difficult to completely deci-
pher the tasks behind the content,
the snapshots proved incredibly use-
ful for grounding subsequent dis-
cussions with study participants. We then interviewed
half of the participants, discussing the whiteboard snap-
shots as well as their ideas for uses of an augmented
whiteboard.

Our study confirmed some of our expectations and
provided some surprises. A complete account of the
study is available elsewhere.3

Segments
One of our expectations about whiteboard use was

that people typically create and maintain multiple clus-
ters of content on their whiteboard. We certainly saw
clusters (or segments) of whiteboard content, typically
an average of five segments. When queried, participants
rarely identified nested segments.

We were surprised at the longevity of some segments
with continued input, for example the common item-
ized to-do lists where items are checked off and new
items added. But many segments stayed in flux as indi-

Elizabeth D. Mynatt
Georgia Institute of Technology

Takeo Igarashi
University of Tokyo

W. Keith Edwards
Xerox Palo Alto Research Center

Anthony LaMarca
Yahoo

We designed the Flatland

augmented whiteboard

interface for informal office

work. Our research

investigates three different

building approaches based

on input from user studies.

viduals and then multiple people took turns working
with the material.

Offline computer recognition of segments would be
difficult at best, especially as the board changed over
time. In general, handwriting quality was poor, making
domain-based recognition difficult. Nevertheless, our
inspection of whiteboard snapshots identified segments
reasonably easily, as they still tended to maintain an
overall gestalt.

Getting white space
A common complaint from most whiteboard users was

the continual challenge to find usable space amongst
content they didn’t want to erase. We identified two
strategies in play. First, the clean-desk users often erased
their entire whiteboard at the beginning or end of the
day. Second, we recognized space scavengers.

Most users were space scavengers. These folks came
in two flavors. Many had a known hot spot, where mate-
rial changed frequently, bordered by longer-lived con-
tent. They typically used this hot spot when other people
were in the office either for brainstorming with multiple
writers or for illustrating points to an office visitor. In
any case, content in this area was known to be short-
lived. Other users had no obvious hot spot but migrated
across the board, erasing where and when possible.

Color
One question we had was whether participants had

strategies for using color. If so, knowing those strate-
gies, could we design computerized tools that would
more easily recognize segments and tasks? For the most
part we found that color choice was random and unin-
formative. A few users did create on-the-fly color codes
when working with more complex material. A larger
number of users commented that they would automat-
ically pick up a contrasting color when writing near
unrelated material.

Frequency of use
Most whiteboard users described their use as “bursty”

(short, intense periods of use with lulls in between).
Depending on the circumstances, days to months passed
between uses. An open question is, if basic support for
whiteboard use improved—such as making it possible
to retrieve whiteboard content and thus freeing visual
space—how much would whiteboard use increase?

Tasks
We observed a variety of lightweight tasks carried out

on whiteboards, including

■ Reminders: Either a to-do list or a note on the board
designed to prompt a future task. Visibility of
reminders is key.

■ Quick capture: Especially for users minimizing the
amount of paper notes in their office, the whiteboard
was a favored medium for capturing quick, specific data
such as phone numbers. One surprise was the number
of URLs, given how cumbersome they are to write.

■ Thinking: All manner of incomplete and seemingly
vague content was written as participants used their

whiteboards as a scratch surface while pondering
concepts much larger than their surface representa-
tions. Few illustrations resembled traditional out-
lines; at best they used a list.

Users asked for capabilities in an augmented white-
board that would let them retrieve past whiteboard con-
tent without the naming and filing overhead associated
with desktop computers. They wanted to manipulate a
virtual space without losing visibility of existing con-
tent. The transformation of material from the white-
board to desktop computer was often done “in the
head,” either translating or, less often, transcribing
material. Nevertheless, users wanted the ability to view
whiteboard content from remote computers.

Augmenting whiteboards
The whiteboard offers a flexible tool for quickly cap-

turing input with an informal look-and-feel, and its large
visible surface supports parallel tasks including aware-
ness. However, its utility past that point is limited. Its
content cannot be saved and retrieved, or even moved
out of the way. As simple strokes on a board, all input is
treated the same, whether a to-do list, a series of calcu-
lations, or an illustration. Additionally, writing may be
illegible and the visual quality of drawings poor.

We intend to create an augmented whiteboard called
“Flatland” to better support typical whiteboard use in
an individual office. In our design, we attempt to extend
the existing whiteboard look-and-feel with an interface
whose feel and aesthetics match its role in informal
office work. Our initial hardware configuration employs
a SmartBoard coupled with a projector. The SmartBoard
is a touch-sensitive whiteboard that accepts normal
whiteboard marker input as well as stylus input. Cap-
tured strokes are then projected onto the board. Given
this platform and our characterization of whiteboard
use, our design goals were

■ To support a low threshold for initial use while mak-
ing increasingly complex capabilities available. At the
simplest level, Flatland should act like a normal white-
board, where you can walk up to it and write on it. In
general, its look-and-feel should remain simple and
informal.

■ To provide a look and feel appropriate for informal
whiteboard tasks and distinct from production-ori-
ented tools typically found on a desktop computer.

■ To support informal whiteboard tasks such as to-do
lists and sketching.

■ To support clusters of content on the whiteboard. These
clusters, or segments, may be created for different pur-
poses, at different times, and by different people.

■ To support the use of informal and context-depen-
dent information. For example, content could be
stored and retrieved based on its salient context (spa-
tial location on board, time of creation, people pre-
sent) instead of requiring a file name.

■ To support the flexible management of a dynamic
whiteboard space, such as freeing up white space for
new input while maintaining the visibility of current
content.

Large Displays

56 July/August 2000

Flatland basics
Scenario: On Monday, Ian walks up to his new Flatland

board and jots down some quick notes using the stylus just
as if he were using an old-fashioned whiteboard. Flatland
automatically groups his notes into a segment and draws
an informal border around them. On Tuesday, he writes
down a to-do list, creating another segment. On Wednes-
day afternoon, he sketches a map to his house for an office
visitor. On Thursday, he uses the time slider to replay items
that he has checked off so that he can write his status
report. (See Figure 1.)

Flatland supports two modes of stylus input. The pri-
mary mode accepts drawing strokes on the board. The
secondary mode, activated by holding a button, creates
meta-strokes. These meta-strokes form gestures used
for managing the board’s visual layout as well as for
applying behaviors to segments. (Although we took
great care to design a small gesture set, we won’t discuss
this process in detail due to space constraints.) The tap
gesture causes a pie menu to display,
and directional gestures are short-
cuts for the pie menu (that is, a
marking menu). (See Figure 2.)

Managing space
As a computationally enhanced

whiteboard, Flatland provides a
flexible and dynamic writing sur-
face. Since the presence of material
on the whiteboard often acts as an
informal reminder, we opted for
strategies that let users acquire
white space while still ensuring the
visibility of existing content.

The basic conceptual building
block is a whiteboard segment—a
cluster of content. Flatland creates
segments automatically when users
write on the board. The segments
aren’t allowed to overlap and can be
moved by the user or the system.
Flatland also automatically shrinks
segments to create more white space
on the board.

Auto-segmenting
Most whiteboard users manage

multiple clusters of content on their
whiteboards. They take advantage
of the large visual surface to use different parts for dif-
ferent tasks at different times. Since this process of divid-
ing up the board is a lightweight, implicit interaction, we
wanted to provide automatic mechanisms for generat-
ing these clusters or segments. Although users don’t need
segments to write on the board, these segments are the
basic building block for managing the board’s spatial lay-
out, adding additional behaviors to the whiteboard, and
retrieving content.

Given a clean board, a border appears when the user
begins writing, denoting a new segment. The border
grows to encompass additional strokes of input if the
subsequent strokes seem to fall in the same segment.

Several factors could determine into what segment
strokes belong:

■ Ink density: Given a new stroke, the system could bal-
ance maximizing ink density in each segment while
minimizing the number of segments on the board.

■ Active segment: If the user has interacted with the
board recently, there could be an active segment that
expects subsequent input.

■ Time: The system could be biased to creating a new
segment if significant time has passed since input in
that area of the board.

■ Content: Similar content could be kept together.

IEEE Computer Graphics and Applications 57

1 Typical use of Flatland.

Grab borders
Move segment

Scribble
Erase stroke

Short stroke
Marking menu

Tab
Call pie menu

Using secondary strokes

Undo
behavior

Delete

Redo

Take
snapshot

Apply
behavior

Time
slider

Undo

Color

(a)

(b)

2 Gestures and
pie menus
support simple
actions.

■ Spatial arrangement: The system could expect subse-
quent input following cultural norms. For example,
lists would proceed top to bottom, left to right per
Western writing norms.

We explored these factors in our design, interaction
mock-ups, and implementation. We opted for a simple
design where existing segments are grouped into
bounding boxes. The bounding box for the active seg-
ment expands to anticipate new strokes to that segment.
If new strokes cross the border of the expanded segment,
they are included. Currently, the extra space in the
active segment only follows Western writing conven-
tions, with additional space to the right of and below
existing strokes. (Although aesthetically marked as
thick, wavy lines, the segments are rectangles, easing
coding complexity and performance costs. The dis-
crepancy hasn’t been a problem.) Pen input in an inac-
tive segment makes it active, with an expanded input
area. Input to the “root” space of the board (called the
root segment) generates a new segment.

We opted for this simpler mechanism because it
seemed to do “the right thing” most of the time and the
interaction is predictable. We also provide simple facili-
ties for joining and splitting segments that act as error-re-
covery mechanisms. In general, automatic segmenting
doesn’t significantly raise the threshold for initial use,
and it provides a base for supporting interaction tailored
to natural clusters of content.

Our design differs from other whiteboard interfaces,4

since users don’t have to explicitly group material and
clusters aren’t recognized by their content (such as rec-
ognizing a list or a table). Although the system works in
the background, Flatland users feel like they’re driving
the interaction—the auto-segmenting mechanism is
simple, and users can easily activate segments to add
more content or create a new segment by tapping on the
root segment.

Active and inactive segments
Flatland supports active and inactive segments where

there can be one or zero active segments at a time. Active
and inactive segments differ in their behavior and
appearance. First, the border of the active segment looks
much brighter than the lighter borders of the inactive
segments. In Figure 3, for example, the dragged seg-
ments are active, while the squashed segments are inac-
tive. We experimented with a number of approaches in
delineating segments, including not showing borders at
all and only showing the active segment’s border. Our
informal use favored showing borders for all segments

because they convey a great deal of
information about the board’s state.
Since Flatland is biased to including
new strokes in the active segment,
visually marking the active segment
informs the user where the bias
resides.

Inactive segments take as little
screen real estate as possible while
still showing their content. In con-
trast, active segments expand to

include white space. This expansion visually marks the
bias for new input to fall into the active segment. When
the segment becomes inactive, it shrinks to remove the
surrounding whitespace.

One lesson from informal use pertains to deleting
strokes in an active segment. In our first design, the
active segment would shrink based on the deleted mate-
rial. This behavior was disturbing when followed by
more pen input, since the input area was now smaller,
and new strokes in the area of the deletion—the last
location of the pen—might now fall outside of the active
segment. Currently, the active segment can only become
larger, taking the more compact presentation when
made inactive.

Moving and squashing
Users can move segments with a standard select-and-

drag motion. To reduce the complexity of working on
the whiteboard, and to ensure visibility of each segment,
segments aren’t allowed to overlap. As other segments
are bumped, they move out of the way. Many people use
their whiteboard as a surrogate memory.3 If segments
were allowed to overlap, important reminders might be
completely obscured.

Although we didn’t want users to obscure content via
overlapping segments, we still needed mechanisms for
creating more white space. To meet this need, Flatland
automatically squashes segments as they bump into the
border of the board. With each bump the segment scales
down until it reaches a minimum size (see Figure 3).

Flatland is biased to squashing segments that have
been inactive the longest. We opted against using a
scrolling or zooming space (a la Pad++5) to minimize
the potential for losing track of whiteboard clusters.
With further user testing, we will determine if users ever
need to explicitly squash segments or if the automatic
squashing will suffice. To gain more space, users can also
explicitly remove segments from the board.

Applying behaviors
One of the primary design philosophies of Flatland is

that the whiteboard should be usable like a normal,
physical whiteboard and yet provide powerful assistance
with everyday tasks as needed. To retain the simplicity
of a whiteboard, in Flatland the user’s input is always
freehand strokes on the board with no pulldown menus,
buttons, handles, or the like. At the simplest level these
freehand strokes are inked as they are drawn onto the
board. As previously discussed, these strokes are
grouped into segments.

Flatland supports specific tasks by allowing the user

Large Displays

58 July/August 2000

3 Inactive
segments
squash to
reduce size
when they
bump into the
board’s border.

to apply behaviors to segments. Behaviors interpret
input strokes, potentially adding strokes and replacing
existing strokes. For example, with the map behavior a
single line is transformed into a double line to depict a
road. Behaviors, however, don’t render the strokes
themselves, they just modify the strokes belonging to a
segment. The segments then paint the strokes, creating
a unified appearance for the entire board.6

Because we implemented behaviors so that they only
observe strokes, not lower level mouse events, they must
wait until the user completes a stroke before interpret-
ing the stroke. This design helps provide a unified inter-
face similar to stroking a normal whiteboard, as all
strokes look the same.

Users apply behaviors by selecting from a set of behav-
ior icons. These animal figures indicate a working behav-
ior at the top of the segment. To dismiss a behavior, the
user taps on the animal figure and chooses “Good-bye”
from the resulting menu. This design helps maintain an
informal feel without menu bars while providing a han-
dle to behavior-specific functions. The metaphor is of an
assistant or muse that interprets user input and person-
ifies the behavior.

Sample behaviors
We designed and implemented a few behaviors to

support typical office whiteboard tasks (see Figure 4).
Flatland’s design goals of simple, informal interaction
extend past the general look-and-feel of the interface
into the design of individual behaviors themselves. Since
the purpose of the behaviors is to support informal, pre-
production tasks, we strongly favored ease of use over
providing features for producing a detailed artifact.
Common themes in designing individual behaviors are

■ Few explicit commands exist; strokes are interpreted
on-the-fly.

■ Generated output is rendered in a “hand-drawn”
style.

■ Minimal (if any) control widgets are added to the seg-
ment.

■ “Infinite” undo-redo supports easy error recovery.
■ Handwriting recognition is generally not used to limit

the need for error correction and recovery. The one
current exception is the calculator behavior, which
favors handwriting in lieu of push buttons.

This final design choice limits some potential uses of
the system, but significantly simplifies user interaction.
We’re experimenting with offline handwriting recog-
nition that makes best guesses at recognizing the con-
tent of segments. Recognized keywords at a reasonable
level of confidence can be used for later retrieval of the
segment.

To-do lists. The to-do behavior manages a series of
strokes as a single-column list. The items aren’t recog-
nized per se, but remain individual inked strokes. Flat-
land renders a hand-drawn checkbox to the left of each
item. Subsequent strokes across the checkbox check off
the item. Strokes across an item remove it from the list. A
simple gesture lets users move an item to a new location

in the list. The system reformats the list after any change
to the list’s contents (such as add, remove, reorder).

2D drawing. The 2D drawing behavior is a port of
Pegasus,7 an interactive beautifier, to the Flatland archi-
tecture. The typical frustration users feel when drawing
illustrations on their whiteboards motivated the inclu-
sion of this behavior. Strokes are neatened to create sim-
ple, formatted line drawings. To create an efficient and
intuitive drawing process, Pegasus offers potential new
strokes based on the drawing’s current structure. Even
without explicit commands, the user can quickly author
compelling and useful line drawings.

Map drawing. Another common drawing task is
sketching maps for other people. Like the 2D drawing
behavior, the map behavior replaces input strokes with
improved strokes. Single lines become roads with dou-
ble lines and open intersections. Again, the system has
no explicit controls for creating detailed, production-
quality maps to get in the way of quickly sketching suf-
ficient and powerful illustrations.

Calculator. In the calculator behavior, strokes are
interpreted as columns of numbers to be added or sub-
tracted. Output is rendered in a hand-drawn style. Suc-
cessive calculations can be appended for further
interpretation. Likewise, input can be modified at any
point to trigger reinterpretation. Instead of supplying a
calculator widget with push buttons and a display, this
behavior leaves a persistent, editable trail more easily
shared with others and reused.

Combining behaviors
The difference between behaviors and traditional

applications becomes more apparent when combining
multiple behaviors over time. For example, starting first
with the map behavior, a user can sketch out the rele-
vant streets and intersections. After removing the map
behavior and applying the 2D drawing behavior, the

IEEE Computer Graphics and Applications 59

4 Flatland
behaviors
marked with
iconic
assistants.

user can sketch relevant buildings and other landmarks.
Now, with no behaviors present, the user can label the
map (see Figure 5).

Retrieving segments
Current whiteboards have one obvious limitation:

once you erase material on the whiteboard, you can no
longer recover it. In our design, we wanted users to
retrieve past whiteboard content without adding to the
complexity and overhead of using the whiteboard.

Naming a file and deciding on its location is a com-
mon, albeit heavyweight task—too heavyweight for
informal interaction with a whiteboard. Simply deter-
mining a name for content loosely associated with any
product or deliverable is difficult. In contrast to pro-
duction artifacts, whiteboard content is heavily context-
dependent (for example, “the outline I was working
from last month,” “the diagram that Amy and I worked
on a few days ago,” “my latest to-do list”).

To support lightweight, context-rich storage and
retrieval of whiteboard content, Flatland uses the Presto8

document repository. By default, each segment in Flat-
land is automatically saved as a Presto document with-
out requiring an explicit action or input from the user.
The document is identified by its surrounding context
(date, time, color(s), spatial location, active and past
behaviors). Other forms of context, such as people pre-
sent in the office, are possible but not yet implemented.

With saving as an automatic process that doesn’t
require explicit attention from the user, we still must
provide a means for retrieving saved segments. When
we asked whiteboard users to describe past segments,
as well as strategies for retrieving segments, they cited
time and visual recognition as the two cues that would
aid them most in retrieval.3 We’re currently experi-
menting with a number of context-based retrieval meth-
ods for Flatland segments, including semantic time
snapping and context queries.

Semantic time snapping
Time provides a powerful cue in retrieving context-

rich information. In a previous study,3 most whiteboard

users couldn’t say exactly when they wrote something
on their board, but they had a good idea for a general
range in time (a few days ago, sometime last week, a
couple of months ago).

To support time-based retrieval in Flatland, users can
attach a time slider to any segment. The slider works as
expected, to change the display backward and forward
in time for that segment (see Figure 6). Touching the
endpoints of the slider makes the slider jump to the next
interesting point in that timeline. Interesting points are
states prior to long periods of no input, prior to input to
another segment, prior to removing that segment, and
explicit snapshots by the user. Presto automatically tags
and stores these states.

The history mechanism used to implement the time
slider also provides infinite undo/redo capability. With
a leftward gesture, users can undo strokes in a segment
and quickly access a past version. Undo strokes on the
root segment play back the whole board, including the
creation and deletion of segments. This history mecha-
nism is based on Timewarp,9 a system to support
autonomous collaboration through the use of multiple,
editable timelines.

Context queries
Visual recognition via thumbnails offers another

powerful method for retrieving files.3 The find behav-
ior lets users scan and retrieve past segments. To con-
strain the search, users select context attributes for a
desired segment such as “the map behavior was used,”
“about last week,” and “Ian was in the room.” Icons cor-
responding to the choices (query terms) are visually
depicted in the segment and can be further modified
(for example, negated). When the number of matching
segments is small (20), thumbnails of the segments
appear. To retrieve a segment, the user drags it out of
the search segment and onto the root segment. This
retrieval interface isn’t fully implemented, but the
underlying storage and retrieval mechanisms are in
place.

Status
The Flatland system has been implemented in Java

using JDK1.1.6 and the Swing UI toolkit. The current
implementation is approximately 42,000 lines of code.
The system uses the Presto document management sys-
tem as the basis for saving and retrieving “documents”
that represent the histories of segments. All of the behav-
iors described in this article have been implemented.
The Calculator behavior uses the Calligrapher online
handwriting recognizer from Paragraph Corporation;
this is the only native code in the system.

Large Displays

60 July/August 2000

5 Combining behaviors by sketch-
ing a map (left), adding a building
(middle), and annotating the map
(right).

6 Snapping to
an interesting
point in time
using the time
slider.

Contributions and future efforts
One obvious area of future work involves the creation

of additional behaviors for the Flatland system. Users
have suggested a number of common tasks in office pre-
production work that could profitably be supported by
behaviors: paper outlining, rough budget analysis, com-
munications, and so on. One of our goals is to evolve the
system into a development environment for the creation
of lightweight, pen-based tools for whiteboard settings.

Although our work has been informed by usage stud-
ies of whiteboards in actual offices, we plan to validate
our designs via several additional studies: first, an eval-
uation of the specific UI techniques presented here, and
second, an in situ evaluation of the board in its intend-
ed setting.

Finally, one goal of our work we haven’t yet begun to
address is the blurring of the physical and the virtual in
the office setting. We plan on extending the notions of
ubiquitous computing throughout the office, with a par-
ticular focus on integrating physical artifacts. ■

Acknowledgments
Numerous groups of people with Xerox PARC have

contributed to this work. Thanks to the “Magic Office”
team that was the home base for these efforts. Thanks
to Mark Weiser and the Computer Systems Laboratory
for funding for people and equipment. Also thanks to
the Tivoli team for design discussions and an initial ges-
ture code base to get us going. This article is largely
derived from a presentation at the 1999 ACM Confer-
ence on Human Factors in Computing Systems and pub-
lished in Proc. CHI 99, © 1999 Association for
Computing Machinery.10

References
1. G. Abowd et al., “Teaching and Learning as Multimedia

Authoring: The Classroom 200 Project,” Proc. ACM Multi-
media 96, ACM, New York, 1996, pp. 187-198.

2. T.P. Moran et al., “Evolutionary Engagement in an Ongo-
ing Collaborative Work Process: A Case Study,” Proc. Com-
puter-Supported Cooperative Work (CSCW) 96, ACM, New
York, 1996, pp. 150-159.

3. E.D. Mynatt, “The Writing on the Wall,” Proc. 7th IFIP Conf.
on Human-Computer Interaction (Interact 99), M.A. Sasse
and C. Johnson, eds., IOS Press, Edinburgh, UK, 1999, pp.
196-204.

4. T.P. Moran et al., “Implicit Structures For Pen-Based Sys-
tems Within A Freeform Interaction Paradigm,” Proc. CHI
95, ACM, New York, 1995, pp. 487-494.

5. B.B. Bederson and J.D. Hollan, “Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics,” Proc. 1994 ACM Symp. on User Interface Software
and Technology (UIST 94), ACM Press, New York, 1994,
pp. 17-26.

6. T. Igarashi et al., “An Architecture for Pen-based Interac-
tion on Electronic Whiteboards,” Proc. Advanced Visual
Interfaces (AVI) 2000, ACM Press, New York, May 2000.

7. T. Igarashi et al., “Interactive Beautification: A Technique
for Rapid Geometric Design,” Proc. UIST 97, ACM, New
York, 1997, pp. 105-114.

8. P. Dourish et al., “Presto: An Experimental Architecture
for Fluid Interactive Document Spaces,” ACM Trans.
Computer-Human Interaction, Vol. 6, No. 2, June 1999,
pp. 133-161.

9. W.K. Edwards and E.D. Mynatt, “Timewarp: Techniques
for Autonomous Collaboration,” Proc. CHI 97, ACM, New
York, 1997, pp. 218-225.

10. E.D. Mynatt et al., “Flatland: New Dimensions in Office
Whiteboards,” Proc. CHI 99 Conf. on Human Factors in Com-
puting Systems, ACM, New York, 1999, pp. 346-353.

Elizabeth D. Mynatt is an assis-
tant professor in the College of Com-
puting at the Georgia Institute of
Technology. There she directs the
Everyday Computing Laboratory,
examining the human-computer
interaction (HCI) implications of the

continuous presence of computation in everyday life. She
received her PhD in computer science from Georgia Tech
in 1995.

Takeo Igarashi is a postdoctoral
research associate of the University
of Tokyo. He earned MS and PhD
degrees in information engineering
from the University of Tokyo in 1997
and 2000, respectively. He is inter-
ested in the development of new

interaction techniques for graphical applications, includ-
ing pen-based 2D drawing, sketch-based 3D modeling, and
information visualization.

Keith Edwards is a Senior Mem-
ber of Research Staff at the Xerox
PARC Computer Science Lab. His
research interests include interactive
systems, distributed software sys-
tems, and how the two interact. He
did his PhD work at Georgia Institute

of Technology and is the author of Core Jini, published by
Prentice-Hall.

Anthony LaMarca is a member
of the reseach group at Yahoo. He is
particularly interested in improving
human-computer interaction in
everyday applications. He holds a
BA in computer science from the
University of California at Berkeley

and a PhD in Computer Science from the University of
Washington.

Contact Mynatt at the College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332-0280,
mynatt@cc.gatech.edu.

IEEE Computer Graphics and Applications 61

