
Enhancing general-purpose tools with multi-state

previewing capabilities

Michael Terry*, Elizabeth D. Mynatt

Everyday Computing Lab, GVU Center, College of Computing, Georgia Tech, Atlanta, GA 30332, USA

Received 20 May 2005; accepted 15 July 2005

Available online 26 August 2005

Abstract

General-purpose design tools can be applied to a wide variety of design problems, but the large number of unique states they are able to

produce makes it difficult to find results most relevant to a specific design problem. Current interfaces exacerbate this problem by offering

only a single preview of one potential future state. We introduce multi-state previewing tools to facilitate the process of generating,

displaying, navigating, and evaluating multiple, potential future states simultaneously. Multi-state previewing tools specifically encode and

automate higher-level design practices, such as exploring multiple alternatives, better aligning computer-based tools with design. In this

paper, we synthesize a framework for this class of tools by combining and generalizing existing instantiations, then show how this framework

can be used to guide the design, implementation, and further research of these tools.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Multi-state previewing; Tool design; General-purpose tool
1. Introduction

Research in computer-based design tools has sought to

assist the design process at various stages, and through

varying levels of intervention. For example, capture and

access services such as those provided by the Designer’s

Outpost [9] or Chameleon [24] offer peripheral support by

capturing designers’ interactions with natural media in the

physical world. The design history that accumulates serves

to document the process as it unfolds, but is also

manipulable, enabling designers to modify past decisions

and actions as needed. Other applications take a more

central role and constitute the primary tool for solving

portions of the design problem. For example, Denim [10] is

an application that can be used as the main tool for the early

phases of website design: using a pen-based interface, users

can create and manipulate rough sketches of a website in

Denim, then instruct the application to automatically

translate these sketches into actual web pages.
0950-7051/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2005.07.004

* Corresponding author.

E-mail addresses: mterry@cc.gatech.edu (M. Terry), mynatt@cc.

gatech.edu (E.D. Mynatt).
This paper examines the process of using general-

purpose computer-based tools to directly transform existing

data within the design process. As such, we do not consider

tools that support activities like free-form sketching (where

the designer essentially begins with a ‘blank slate’), but

rather tools that take existing data, such as a digital image or

sound recording, and modify that data to another, more

desired form.

The specific problem we investigate is that of manipulat-

ing a general-purpose tool so that the states it outputs are

those values most relevant to a particular design problem. A

typical computer-based tool can transform a given input into

one of millions of other possible values, all in a single step.

Though this flexibility grants the user considerable power,

current interfaces make it difficult for users to effectively

wield this power in ways commensurate with design

practices. For example, in the course of developing a

solution, a designer may wish to compare and contrast

multiple, potential solutions to determine which best solves

the problem. However, current interfaces do not explicitly

support the process of generating multiple alternatives

simultaneously: applications allow a document to exist in

only one state at a time, and offer no more than a single

preview. This creates a form of ‘interface tunnel vision’ that

limits the user’s ability to quickly attain an overview of
Knowledge-Based Systems 18 (2005) 415–425
www.elsevier.com/locate/knosys

http://www.elsevier.com/locate/knosys


Fig. 1. User interface ‘tunnel vision’ limits the number of previews of

potential future states. While a designer may wish to explore a handful of

variations, she can preview only one at a time.

Fig. 3. Designers must intersect two worlds when using a general-purpose

tool: the set of states applicable to a given problem (desirable states) and

those reachable with the tool. Multi-state previews offer a more

comprehensive view of the possibilities than single previews.

M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425416
one’s possibilities (Fig. 1). Consequently, users must

develop their own workarounds to achieve desired practices.

To better align general-purpose design tools with common

design practices, we offer multi-state previewing tools, a user

interface mechanism that streamlines the process of gener-

ating, navigating, manipulating, and evaluating multiple,

potential future states simultaneously. Multi-state previewing

tools exploit modern-day computational power to generate

previews of sets of possibilities, without requiring users to

commit to any one value (Fig. 2). Conceptually, these tools

help designers bridge two worlds within the design process:

the set of future states acceptable to the designer and the set of

states actually reachable with the computer-based tool (Fig. 3).

Multi-state previewing tools help users create an intersection

of these two spaces by initially displaying a broad sampling of

possibilities, which can then be manipulated to show very

selective portions (Fig. 4).
Fig. 2. Multi-state previewing tools extend the concept of a preview to show

entire ranges of previews at one time. In this Side Views screenshot (a

system described later), one can see ranges of previews for two of a

command’s parameters.
Multi-state previewing tools represent a theoretical

concept derived from work we conducted to support

expert users engaged in open-ended tasks [22,23]. We

originally began this research by performing in situ

observations of experts solving their everyday tasks.

From these observations, we found that interfaces force

users into linear modes of problem solving at odds with

the non-linear, exploratory, and experimental practices
Fig. 4. A simplified depiction of multi-state previewing tools’ capability to

show broad or selective views of potential future states. The grids on the left

represent all possible states from a given tool; shaded areas represent those

states shown by the multi-state previewing tool on the right.



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425 417
typical of design: designers would purposefully poke and

prod the problem by testing out and experimenting with

various commands, behaviors very similar to those

described by Schön in his theory of reflection-in-action

[19]. However, these activities were very rarely

supported by specific user interface mechanisms, and

thus cumbersome and time consuming for the user. As a

result, we built Side Views [23], a system that enables

users to quickly generate previews for multiple com-

mands and parameters simultaneously.

Others have noticed the same deficiencies in user

interfaces (e.g. Lunzer [11] and Marks et al. [13]), and

have constructed tools to address these limitations. This

paper represents the next step in this line work: it unites

related efforts by creating a common theoretical framework

for tools that offer users multiple previews, and offers a

roadmap of what needs to be done next. The resultant

framework suggests an alternative model of computing,

from one requiring commitment to a single command for a

task to progress, to one in which the user has the freedom to

work with, contemplate, and embed multiple alternatives

within their workspace. Multi-state previewing tools

provide the first step towards this alternate vision of

interaction; other work could advance this concept further

by joining these types of tools with advanced history tools

that more fully track the states a user has visited (e.g. as in

[5,9]).

The framework also serves as a springboard for future

efforts by identifying areas in need of further research.

For example, to date there has been virtually no user

testing of these tools; thus, while this class of tools can

be easily motivated by comparing desired design

practices with the practices afforded by current compu-

ter-based tools, there is still the unanswered question of

how well these concepts play out in tools used for day-

to-day design work.

The rest of this paper is structured as follows: first, we

summarize characteristics of design problems and design

practice, focusing on the large space of possibilities

designers must consider when solving a design problem.

We argue that the fluid, ever-changing nature of design

problems implies a need for general-purpose tools, but

observe that the large space of possibilities afforded by these

tools adds to the burden of developing a solution. We then

turn to a study we conducted that investigated the practices

of expert users of an image manipulation application. The

results from this study indicate that current interfaces offer

considerable domain-specific functionality, but lack support

for higher-level design practices. We then introduce multi-

state previewing tools as a mechanism to help bridge the gap

between design practices and computer-based tools. A set of

existing multi-state previewing tools is reviewed, and a

general framework for designing and implementing these

tools is synthesized. We conclude by reflecting on

opportunities for future work.
2. Design practice

Design problems have been variously described as ill-

defined [17], ill-structured [6,20], and wicked problems

[18]. While each of these terms describes a larger, more

general class of problems, each is applicable to design, and

each lends its own particular set of nuances and shades of

meaning to the description of this activity.

Reitman was among the first to draw a distinction between

well-defined and ill-defined problems, characterizing ill-

defined problems as those lacking fixed goals and operators

[17]. According to Reitman, ill-defined problems present a

far greater challenge to solve than well-defined problems

because the problem-solver must not only construct a

solution, but must also define the problem and its boundaries.

Simon [20] later questioned some of Reitman’s assertions,

arguing that problems that are supposedly well-defined by

Reitman’s definition exhibit characteristics of ‘ill-defined-

ness’ when the search space exceeds the problem solver’s

capacities (such as available memory store). To illustrate his

point, he gave the example of chess, a problem that is well-

defined by Reitman’s criteria, and claimed that choosing a

move in a chess game is more like an ill-defined problem

since, the search space is too large to create a perfect

evaluation function for each and every move.

Unsatisfied with the broadening of the problem space

implied by Simon’s argument, Goel and Pirolli [6] drew a

sharper distinction between design and non-design tasks by

enumerating a set of characteristics more likely to be found

in design task environments than in non-design task

environments. In their definition of design problems, they

reintroduce the notion of ill-defined goals, states, and

operators as ‘prototypical’ features of design problems, and

make the further requirement that something is actually

designed, rather than simply solved.

While debate continues about what precisely defines and

distinguishes design, there appears to be some consensus on

particular characteristics of design problems and the

practice of design. Goel and Pirolli [6] have identified a

number of these common characteristics and lend support to

their selections through a study of designers in three

different disciplines (architecture, mechanical engineering,

and instructional design). While the authors specifically do

not claim that their criteria are complete and comprehen-

sive, the properties identified do echo a number of other

related research efforts (e.g. [17–20]), and thus serve as a

useful starting point for discussing design. Rather than

completely replicate their full set of claims, we summarize

their findings with an eye towards those items most relevant

to the theme of this paper (i.e. using computer-based tools to

manipulate data within the design process).

In describing design problems, Goel and Pirolli assert

that design problems:

† are large and complex with a number of interconnected

parts that affect one another;



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425418
† have underdefined start and goal states, with equally

underdefined transformation functions; and

† lead to solutions that can only be described as ‘better or

worse’, as opposed to ‘right or wrong’.

With regards to design practice, the authors found:

† distinct problem-solving phases (preliminary design,

refinement, and detail design);

† problem structuring and decomposition;

† incremental development of the solution;

† the practice of limiting commitment to precise solutions;

and

† personalized stopping rules and evaluation functions.

Again, many items in these lists summarize and draw

upon previous work. For example, Rittel [18] and Reitman

[17] have both observed that design problems do not have

‘correct’ solutions, just better or worse ones. However, what

we would like to focus on is the notion that design problems

create an enormous space of possibilities a designer can

consider: not only can the designer develop multiple,

equally viable solutions for one particular problem

formulation, but she can also renegotiate and redefine the

problem, thereby opening up an entirely new set of

possibilities. Thus, one can view the designer’s task as not

only transforming the current state of affairs into a more

desirable one [21], but also pruning the search space to

consider only those possibilities most likely to yield

favorable results. Many of the design practices suggest

this type of activity: problem structuring defines the

problem and sets its boundaries, preliminary design scopes

out a rough solution, and so on. As we will see, this process

of scoping down the problem space and finding solutions of

interest can be either aided or hindered by general-purpose

computer-based design tools, which themselves generate

large numbers of possibilities to consider.
Fig. 5. The design process can be enhanced by creating specialized tools

that are customized to a small number of problem types (the tall spires), or

by augmenting general-purpose tools so that designers can more quickly fit

them to particular problems (the shaded area).
3. Computer-based tools for design

In this section we consider how features of design

problems influence tool design, and argue that general-

purpose tools will always be needed in the design process.

We then review results from a study we conducted to

understand how well some design practices are supported by

current interfaces.

3.1. Implications for computer-based design tools

Just as solutions for design problems are never perfect,

the features of design problems imply that there does not

exist a ‘perfect’ design tool: at any moment an entirely new

tool or method could arise for solving the problem in a better

way. Similarly, the problem itself could be redefined in a

way that favors one tool over another. As a real-world
example, the comic industry is undergoing significant

changes in the tools, techniques, and storytelling conven-

tions it uses as comics move from print to the web [14].

With the move to the web, previous limitations imposed by

printing technology and the cost of paper have been lifted.

As a result, writers and illustrators are now expanding their

repertoire of methods and tools for solving storytelling

problems as the overall goal shifts from one of telling stories

through the medium of paper, to telling stories through the

medium of the web.

Given the malleability of design problems, it seems clear

that general-purpose tools will always have a place in

solving design problems, because they can, by definition, be

applied to a large number of problems. This is a seemingly

trivial point, but it has some important corollaries. First,

what it does not imply is that automated computer-based

tools—for example, tools that guide the designer through a

series of steps (i.e. ‘wizards’) or tools that solve portions of

the problem using some form of intelligence—have no place

in the design process. Problem-specific tools can greatly

reduce the time and effort needed to develop a solution for

particular problem types. However, what it does suggest is

that there is good reason to research how to augment

general-purpose tools to make them better partners in the

design process, since they will always play a pivotal role.

That is, there are opportunities to improve the design

process by enhancing general-purpose tools by means other

than transforming them into special-purpose tools (Fig. 5).

One such opportunity is facilitating the designer’s process

of manually fitting a tool to a particular problem.

Of the many states a general-purpose tool can generate,

only a portion are applicable to a given problem. In ideal

cases, the designer knows both the states desired and the

method to manipulate the tool to generate those values. In

these circumstances, the designer searches and navigates

the space of possibilities to arrive at the desired values.

When either the desired states or the method to arrive at



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425 419
those states is unknown, the task also becomes one of

experimenting with the tool to develop an acceptable

solution. In all cases, there is the possibility that more

than one viable solution exists. Thus, the designer must

continually evaluate the current problem and the potential

solutions against the overall goals. Collectively, these

activities—navigation, experimentation, and exploration—

help the designer fit a tool to a particular problem instance.

Throughout the rest of this paper, we will continue to frame

our discussion of computer-based tools in terms of these

themes of matching and constraining the set of states from a

tool to those most relevant to the design problem.
3.2. Considering design practices using computer-based

tools

To understand the problem solving process using

computer-based tools, we interviewed and observed three

expert users of an image manipulation application, an artist,

a designer, and an image specialist for a major newspaper

[22]. The interviews were structured to learn about the types

of problems the subjects solved and the general problem-

solving strategies they employed. Following the interview,

subjects worked through a typical task of their choosing,

such as designing an interface or toning (color-correcting)

an image. While not all tasks were what one might consider

‘design’ tasks, they were all sufficiently open-ended and

possessed most of the characteristics of design problems

(e.g. they lacked well-defined evaluation functions, stop-

ping rules, etc.).

Across the range of tasks we observed, the users engaged

in many of the prototypical design practices noted above.

However, very rarely were these practices explicitly

supported by the application itself. Instead, users had to

develop their own ad-hoc methods to achieve the desired

functionality. In our study, we found users:

† employ the undo mechanism to probe the application’s

capabilities, and to experiment with the possibilities,

† ‘scrub’ sliders in dialog boxes to find, verify, and

experiment with argument values,

† use undo and redo to evaluate a command after it had

been applied, and

† make multiple copies of their data to support branching

and limited commitment to particular solutions.

In some instances, the user would not know which

commands or values would work best for a particular

problem, and thus would repeatedly try and undo

different commands to observe their effects. In other

cases, the user was fairly confident about which

command should be invoked, but less confident about

which settings to apply. This uncertainty led to users

‘scrubbing’ sliders in modal dialog boxes, that is, making

broad sweeps with slider controls that gradually narrowed

around areas of interest.
Once a command had been applied, the designer would

sometimes evaluate its effect by invoking undo and redo

repeatedly, which had the effect of ‘flashing’ the two

states—the current and most recent—on the screen. This

practice allowed designers to compare two states in time,

rather than side-by-side in space.

Finally, to limit commitment to particular choices, or to

branch to explore alternatives, users would make copies of

their data so they could more freely experiment with

possibilities.

While these techniques helped the users cope with the

complexities of solving their problems, at times the effort

required was deemed too much, even though they may have

improved the overall result. For example, in one instance we

observed an artist coloring the clothes of a character in his

painting, a task which involved manually applying paint

strokes to the image. After painting the clothes using one

shade of blue, he found the results less than satisfactory.

However, he did not undo his work and try another shade

because he did not feel it worth the effort to redo his paint

strokes with another color. In this instance, the artist may

have benefitted from tools that offered richer previews of the

possibilities before he had to commit to actually painting the

image.

Overall, we found that the application offers very

sophisticated, domain-specific functionality, but generally

lacks mechanisms to support higher-level problem solving

practices. Within the scope of this paper, we found that users

could not easily generate, find, experiment with, and

evaluate multiple potential states: modal dialog boxes

prevent previews of more than one command, and each

command displays one preview at a time. Thus, side-by-side

comparisons of commands are not possible when multiple,

viable alternatives exist, and the single preview provides an

impoverished view of the possibilities.

The reliance on modal dialog boxes with a single preview

is one obvious deficiency in the interface’s design. However,

we believe there is a more fundamental problem with the way

current interfaces are constructed: current interfaces do not

cleanly support the non-linear, exploratory processes of

design. While users may wish to create and contemplate

multiple, potential solutions, applications honor only one

state at a time and lock users into a linear model of interaction

we term the Single State Document Model.

3.3. The Single Sate Document Model

The Single State Document Model (SSDM) is a model of

interaction that requires a document to be in only one state

at any point in time. Users progress through tasks by

applying an operation, then working on the new state that

results. While some past states are accessible via mechan-

isms like ‘undo’, this model allows only one to be active at a

time.

Though conceptually simple for both user and imple-

mentor, this interaction model imposes a serial, linear



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425420
progression through a task that is at odds with the design

process. Thus, while a user may need to simultaneously

consider multiple alternatives (for example, when she is

uncertain which set of parameter values yield the ‘best’

result for a given command), the Single State Document

Model creates a form of ‘interface tunnel vision’ that limits

the number and types of views available at any one moment

(Fig. 1). In essence, the SSDM favors a single, high fidelity

WYSIWYG (What You See Is What You Get) view of the

current document, when it is often just as useful to be able to

view and compare a range of alternatives.

Multi-state previewing tools provide a conceptual shift

from the SSDM to a model of interaction that recognizes a

host of alternatives. We turn now to a description of this

class of tools.
4. Multi-state previewing tools

Multi-state previewing tools are a class of user interface

mechanism that enables a user to generate, navigate,

manipulate, and evaluate multiple potential future states

simultaneously, without needing to commit to any one

particular value. Fig. 6 provides a comparison of the

differences between normal previewing tools and multi-

state previewing tools.

The capabilities of a multi-state previewing tool stream-

line many of the activities designers manually engage in

with existing interfaces. First and foremost, the tools

automatically generate and display a series of alternatives,

a task that otherwise requires significant overhead and time

on the user’s part. Users can take advantage of these
Fig. 6. Comparison of two previewing systems, the current convention of util
automated capabilities to help locate desired values,

experiment without modifying the original data (making

them perfect ‘what-if’ tools), and to perform side-by-side

comparisons of several solutions. Use of these tools may

also lead to the serendipitous discovery of viable alterna-

tives: while searching for specific values of interest, the user

may find a superior alternative she had not previously

considered.
4.1. Specific implementations

A number of commercial and research systems have

hinted at, or fully implemented, interfaces that offer users

multiple previews. In this section, we first review systems

that offer minimal support for this notion, then describe five

research systems that are highly representative of this type

of tool.
4.1.1. Systems offering basic support for multiple previews

See-Through Tools [3,4] (i.e. Toolglasses and Magic

Lenses) are interface mechanisms that use the metaphor of a

physical lens to represent functions within the user

interface. Placing a lens over a document invokes that

function on the data underneath and shows the results within

the lens’s frame. Multiple lens can be arranged side-by-side

on the document at the same time, offering multiple

previews. Additionally, lenses can be stacked on one

another to combine the commands’ effects. See-Through

Tools provide basic support for multiple previews, but are

somewhat limited by physical space (only so many lenses

can be placed on a document at the same) and by the need to

manually place the lenses on and off the document.
izing a single preview, and the proposed method of multiple previews.



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425 421
Adobe Photoshop [1] includes a ‘Variations’ command

that generates a ring of previews representing different

color balance operations. Clicking on a preview has the

effect of shifting the overall color balance by that amount,

and updates other previews with the new value. This

functionality offers a glimpse of the power of multiple

previews, but the method of navigating possibilities—

clicking on a preview—limits the ease with which users

can quickly traverse the possibilities. Furthermore, this

mechanism is available for only one command in the

interface.

A common convention in interfaces for font selection is

to provide a drop-down menu of font names, each rendered

using its own font. Applications made by Corel [2], such as

WordPerfect, employ this technique, and also preview the

font on the current selection in the document. While this

technique has obvious advantages over single previews, the

concept has not been generally applied to other parts of the

user interface.

From these basic systems we now turn to full-fledged

multi-state previewing tools, beginning with the system we

built, Side Views.
Fig. 8. Multiple Side Views can be instantiated at once, allowing

comparisons between commands. These previews dynamically update as

the active data changes, as in this example where the user switches the

current document.
4.1.2. Side Views

Side Views [23] is a user interface mechanism that offers

on-demand, persistent previews of one or more commands

and their parameters. Side Views use the familiar tool-tip

metaphor to provide a preview of a command within a pop-

up window: when the user hovers the cursor over an object

in the interface for a short period of time, a Side View

appears with a preview of that command (Fig. 7). However,

unlike a normal tool-tip, users can interact with the Side

View and click on it to make it persist. Using this capability,

multiple Side Views can be instantiated, allowing a user to

directly compare and contrast multiple, potential commands

at once (Fig. 8).

Side Views enable users to view and interact with a

command’s parameters through parameter spectrums, a

series of previews for each parameter (Fig. 2). Initially, each

parameter spectrum shows an evenly distributed sampling

of values across the range of possibilities. However, users

can modify the lower and upper bounds to make the range

previewed as broad or narrow as desired. Collectively, the

ability to instantiate previews for multiple commands and
Fig. 7. Side Views use the familiar tool-tip metaphor to provide on-demand

previews.
their parameters grants users a breadth-first view of the

possibilities from their current state.

To gain a depth-first view of the possibilities, multiple

Side Views can be combined by dragging and dropping

one command’s preview on another to create a chain of

commands. Like a single Side View, combined Side

Views show previews for each command and its

parameters, with the left-to-right ordering of the

commands indicating the order of operations (Fig. 9).

Changes made to left-most commands ripple down the

chain, allowing users to view how settings in earlier

commands affect later commands.

Side Views also offer previews of direct user input, such

as mouse input. For example, a user can instantiate a Side

View for the paintbrush, then mouse over the active

document. As the user moves the cursor over the document,

the Side View updates its preview to include a paint stroke

corresponding to the mouse movement. Users can then

interactively vary the parameters for the paint stroke within

the Side View, tweaking the characteristics of the tool until

it meets the users’ needs, all without ever modifying the

current document.



Fig. 9. Multiple commands can be combined in Side Views to form a chain

of commands. Here, we see two commands and their parameters that are

sequentially applied to the current document.

M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425422
4.1.3. Design Galleries

Design Galleries [13] is a multi-state previewing system

that varies a set of commands and parameters to produce a

set of semantically distinct output. While most other

instances of multi-state previewing tools present relatively

raw, unfiltered previews of commands, Design Galleries

explicitly attempts to facilitate the process of finding values

of interest by filtering its output to display only those states

that differ most from one another.

Originally, Design Galleries was applied to graphics

applications, such as 3D modeling programs. In these

applications, the system varies parameters, such as the type

of light used to illuminate a 3D scene, then culls the output

to display only those scenes that are the most perceptually

different from one another. A later application investigated

the use of this same technique in the design of radio

antennae [16].

One of the noteworthy aspects of Design Galleries is that it

re-conceptualizes the process of operating on data from one

that is very computer-centric (i.e. choose a function, choose

values for the function’s parameters) to one that is more

closely aligned with how designers work through design

problems (i.e. generate multiple alternatives, and compare and

contrast them). One can imagine applying this concept to a

full-fledged application, so that the user does not seek out

commands to invoke, but instead views the possibilities

offered by the tool, chooses one or more promising states,

refines the selection, and repeats the process.

In their description of the Design Galleries, Mark et al.

describe five core features of the system: an input vector

(essentially, the parameters to vary); a ‘dispersion method’

that generates a set of input vectors which produce widely

varying output; a function that applies the input vector to the

current state to produce a set of results (what they call a

mapping process); a ‘distance metric’ that evaluates the

similarity between the various output; and a display that

presents the output to the user. We will build on many of

these same concepts when we construct a general frame-

work for multi-state previewing tools.
4.1.4. Spreadsheet-like interfaces

In the spreadsheet-like information visualization system

built by Jankun-Kelly and Ma [8], users can view areas of a

data set by choosing parameters of interest and placing them

in the left-most column and top-most row of a tabular

interface. Users can also enter scripts in cells to

programmatically control the parameter values displayed.

With the desired parameters in place, every other cell in the

table renders a slice of the data set using the parameters

chosen for its particular row and column. To enhance this

visualization, results can also be animated.

While this system has been applied to information

visualization problems (i.e. large data sets of multiple

dimensions), the same concepts could be applied to solving

design problems. In particular, the notion of being able to

enter scripts to control the output and the ability to animate

the results could both have practical application in other

multi-state previewing tools.
4.1.5. Subjunctive interfaces

The subjunctive interface is a concept in which users

select multiple, tentative settings for commands and

controls, then view the outcomes of those settings overlaid

on one another in the same space [11,12]. For example, in a

cannon simulator users can select multiple parameter values

for objects within the simulation (e.g. different cannon

angles), then run the simulation to see all possibilities

execute simultaneously [11]. A more sophisticated example

of this concept echoes user input, such as pointer input,

across multiple copies of the same data, in real-time [12].

Each copy interprets the input differently, enabling the user

to perform input once, then choose the most appropriate

interpretation of that input. For example, in one application

the user has the task of selecting an object in a medical

image. As the user makes the selection, one document copy

shows the ‘raw,’ unaltered selection, while another uses an

intelligent system to guess the intended selection.
4.1.6. Suggestive interfaces

Suggestive interfaces [7] are systems that suggest

potential future states by inferring intentions from inter-

actions within a direct manipulation interface. Chateau, the

3D modeling application illustrating this concept, allows

users to construct 3D models using line segments drawn in a

3D space. As the user creates or selects segments, the

system analyzes the current context then generates a set of

potential future states logically incorporating those

elements. If one of the future states matches the user’s

intentions, she can click on it to commit to that state.
4.2. A framework for multi-state previewing tools

From the range of tools presented, we are now in a

position to construct a general framework for this class of

tools. Building from the architecture of Design Galleries, we



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425 423
can generalize to the following set of components for a

multi-state previewing tool:

1. a method that (manually or automatically) chooses the

command or set of commands to be explored,

2. a method that (manually or automatically) produces a set

of arguments for the chosen commands’ parameters,

3. a mechanism that automatically iterates over the set of

commands and their respective arguments, applying

each command to its respective argument set,

4. an optional filter to constrain the output that results,

5. a method to present the results to the user,

6. a mechanism to refine the command and argument

values chosen earlier, and

7. a mechanism that enables the user to choose a given

output.
4.2.1. Command selection

Command selection represents the process of determin-

ing which commands are most relevant to the current

problem state. This process can be a manual, user-driven

process (i.e. the user chooses the commands of interest), or

it can be automated (the application uses the given context

to suggest one or more commands of potential interest to the

user). Side Views, the spreadsheet-interface, and the

Subjunctive Interface use a manually-driven command

selection process, while Design Galleries and Chateau’s

command selection processes are automated.

When considering commands that may be previewed

using multi-state previewing tools, it is important to keep in

mind that commands may also be invoked as a result of

directly manipulating the interface, as opposed to selecting a

menu item or pushing a button. While a tool like Side Views

clearly caters to commands invoked through menus and

toolbars, it is just as conceivable to produce multiple

previews when interacting through direct manipulation, as

evidenced in Chateau.
4.2.2. Argument selection

Argument selection is the process of choosing sets of

argument values for the commands selected in the first step.

As with command selection, this process may occur

manually, or automatically. For example, when using Side

Views, users manually designate valid argument sets by

varying the lower and upper bounds of the values previewed

by parameter spectrums; Design Galleries employ heuristics

to determine these values.
4.2.3. Iterative function application

Once commands and their argument sets have been

selected, a multi-state previewing tool systematically

invokes each command/argument pair on a copy of the

active data to generate a set of output. This output is then

passed on to an optional filter.
4.2.4. Output filter

An output filter constrains the set of results generated to

display only a subset of these values. For example, Design

Galleries includes a fairly sophisticated filter that limits the

set of results to those that differ most from one another.

4.2.5. Presentation mechanism

The results of generating and filtering previews are made

available to the user through a presentation mechanism.

Though the output may have been filtered somewhat in the

previous step, there are still opportunities to filter or

highlight the results using information visualization

techniques. For example, the tool may opt to show as

many different results as possible, or attempt to draw

attention to those it thinks are most applicable to the current

context.

4.2.6. Refinement

When the process of generating and displaying multiple

previews has finished, the user then has the opportunity to

refine the set of values previewed, essentially repeating any

of the prior steps. This is the moment at which the user takes

advantage of the multiple previews to compare and contrast

alternatives, explore, and experiment with the possibilities.

4.2.7. Selection

After searching the space of possibilities, the user can

then choose one of the output to replace the current state (the

equivalent of actually applying a command and its

arguments).

4.3. Reflecting on the framework

The components comprising a multi-state previewing

tool provide an idealized view of these tools: while every

instantiation can be said to implement each component in

some form, they may not be cleanly separated nor

configurable at runtime. For example, the process of

choosing commands and arguments is merged into one

automated process in Chateau. However, the framework

illustrates areas that can be customized by either the tool

designer or the actual end-user. For example, it is

conceivable that the tool provides the capability for the

end-user to write her own output filter so that it constrains its

results to a particular range of values.
5. Summary and opportunities for future work

In this paper, we have argued for a new class of user

interface mechanism called multi-state previewing tools,

and motivated their need by contrasting the practices

employed by designers and those afforded by current

interfaces. Multi-state previewing tools are intended to

support and streamline the experimental, exploratory,

evaluative, and iterative practices of design by explicitly



M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425424
encoding parts of these processes in the user interface. The

framework offered provides a guide to building these tools,

divides the tools into logical components that can be

individually studied and enhanced, and offers a vocabulary

and structure to facilitate evaluations and comparisons.

The framework also suggests areas in need of future

research. While the basic concepts have been demonstrated

by a number of tools, there are several areas that are

particularly under-researched at this moment.

The multi-state previewing tools built thus far have dealt

primarily with data that are static and visual in nature

(the Design Gallery’s antenna design application is an

exception). Opportunities remain to apply these concepts to

non-visual domains, such as sound manipulation, and to

time-based data, such as video.

Another area that has not been thoroughly investigated is

the tight integration of multi-state previewing tools with

direct manipulation interfaces. The Chateau application and

Subjunctive Interfaces come closest to providing previews

within direct manipulation interfaces, but more opportu-

nities exist to understand how to apply these concepts to

other operations, such as drag-and-drop. For example, when

users drag and drop a file in a file explorer, holding down a

modifier key can copy the file, rather than move it.

However, this option is essentially hidden to the user, and

must be known a priori. Multi-state previewing tools could

be applied in this situation to offer users previews of both

possibilities, so that they could manually select one or the

other if they did not know which modifier key to press.

The design of multi-state previewing tools faces many of

the same challenges as the design of information visualiza-

tion tools: choosing multiple commands and sets of

parameters creates a multi-dimensional space of results

that cannot be displayed all at once. The challenges, then,

are to display these results in ways most useful to users,

while providing them with tools that let them fluidly

navigate the space of possibilities. More so than with

information visualization tools, these tools must integrate

well with the main interface and the user’s workflow,

because these tools augment the user’s primary tool and

need to work in concert with it.

Another design challenge shared with information

visualization tools is the timely delivery of the previews.

Current implementations dynamically generate their results,

and in some cases, this can literally take hours (as with

Design Galleries). Therefore, there is an important question

regarding the relationship between the number of previews,

the time required to generate them, and the fidelity required

for the previewing system to be maximally beneficial. For

example, it may be the case that users can achieve the best

results when a few rough previews are generated quickly as

opposed to the system creating more, higher-fidelity sets of

previews. To date, none these issues have been explored nor

evaluated.

Of the systems reviewed, only the spreadsheet-like

interface offers the option for end-user programming. As
has been argued elsewhere [15], end-user programming

facilities enable users to customize a general-purpose tool so

it better matches a user’s particular problem domain;

offering this capability in multi-state previewing tools

could provide similar benefits.

Finally, the area most in need of research is the evaluation

of these tools: no long-term testing has been performed with

any existing system, nor have there been any sizable user

studies. Multi-state previewing tools represent a conceptual

shift in how the interface should assist users in solving a task:

current interfaces assume the user only needs to develop a

single solution by sequentially applying commands, while

multi-state previewing tools do not make this assumption.

Instead, multi-state previewing tools begin with the premise

that regardless of whether the user knows what she wants or

not, she will most probably need to contemplate multiple

alternatives before committing to any one in particular. The

instantiation of this concept in user interface mechanisms is

largely untested, and should be the next step in understanding

the suitability of these types of tools in the design process.
References

[1] Adobe Photoshop. http://www.adobe.com.

[2] Corel Corporation. http://www.corel.com.

[3] E.A. Bier, M.C. Stone, K. Fishkin, W. Buxton, T. Baudel, A taxonomy

of see-through tools Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ACM Press, New York, 1994.

pp. 358–364.

[4] E.A. Bier, M.C. Stone, K. Pier, W. Buxton, T.D. DeRose, Toolglass

and magic lenses: the see-through interface, Computer Graphics 27

(1993) 73–80.

[5] W.K. Edwards, E.D. Mynatt, Timewarp: techniques for autonomous

collaboration Conference Proceedings on Human Factors in Comput-

ing Systems, ACM Press, New York, 1997. pp. 218–225.

[6] V. Goel, P. Pirolli, The structure of design problem spaces, Cognitive

Science 16 (3) (1992) 395–429.

[7] T. Igarashi, J.F. Hughes, A suggestive interface for 3D drawing

Proceedings of the 14th Annual ACM Symposium on User Interface

Software and Technology, ACM Press, New York, 2001. pp.

173–181.

[8] T.J. Jankun-Kelly, K.-L. Ma, Visualization exploration and encapsu-

lation via a spreadsheet-like interface, IEEE Transactions on

Visualization and Computer Graphics 7 (3) (2001) 275–287.

[9] S.R. Klemmer, M. Thomsen, E.P. Goodman, R. Lee, J.A. Landay,

Where do web sites come from? Capturing and interacting with design

history Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, ACM Press, New York, 2002. pp. 1–8.

[10] J. Lin, M.W. Newman, J.I. Hong, J.A. Landay, Denim: Finding a

tighter fit between tools and practice for web site design Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,

ACM Press, New York, 2000. pp. 510–517.

[11] A. Lunzer, Towards the subjunctive interface: general support for

parameter exploration by overlaying alternative application states

Late Breaking Hot Topics, IEEE Visualization ’98, 1998 pp. 45–48.

[12] A. Lunzer. Choice and comparison where the user wants them:

subjunctive interfaces for computer-supported exploration. In Pro-

ceedings of IFIP TC, 13 International Conference on Human-

Computer Interaction (INTERACT ’99), pp. 474–472, 1999.

[13] J. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson,

J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall,

http://www.adobe.com
http://www.corel.com


M. Terry, E.D. Mynatt / Knowledge-Based Systems 18 (2005) 415–425 425
J. Seims, S. Shieber, Design galleries: a general approach to setting

parameters for computer graphics and animation Proceedings of the

24th Annual Conference on Computer Graphics and Interactive

Techniques, ACM Press/Addison-Wesley Publishing Co., New York,

1997. pp. 389–400.

[14] S. McCloud, McCloud, Reinventing Comics: How Imagination and

Technology are Revolutionizing an Art Form, Perennial, UK, 2000.

[15] B.A. Nardi, A Small Matter of Programming: Perspectives on End

User Computing, MIT Press, Cambridge, MA, 1993.

[16] A. Quigley, D.L. Leigh, N.B. Lesh, J.W. Marks, K. Ryall, K.

Wittenburg. Semi-automatic antenna design via sampling and

visualization. In IEEE AP-S International Symposium and USN-

C/URSI National Radio Science Meeting (APS/URSI), 2002.

[17] W.R. Reitman, Reitman, Cognition and Thought, Wiley, NY, USA,

1965.

[18] H.W.J. Rittel, M.M. Webber, Developments in design methodology,

Planning Problems are Wicked Problems (1984) 135–144.
[19] D. Schön, Schön., The Reflective Practioner: How Professionals

Think in Action, Basic Books, New York, NY, 1983.

[20] H. Simon, Simon, The structure of ill-structured problems, Artifical

Intelligence 4 (1973) 181–203.

[21] H.A. Simon, The Sciences of the Artificial, MIT Press, Cambridge,

MA, 1969.

[22] M. Terry, E.D. Mynatt, Recognizing creative needs in user interface

design Proceedings of the Fourth Conference on Creativity and

Cognition, ACM Press, New York, 2002. pp. 38–44.

[23] M. Terry, E.D. Mynatt, Side views: persistent, on-demand previews

for open-ended tasks Proceedings of the 15th Annual ACM

Symposium on User Interface Software and Technology, ACM

Press, New York, 2002. pp. 71–80.

[24] M. Tsang, G.W. Fitzmaurice, G. Kurtenbach, A. Khan, B. Buxton,

Boom chameleon: simultaneous capture of 3D viewpoint, voice and

gesture annotations on a spatially-aware display Proceedings of the

15th Annual ACM Symposium on User Interface Software and

Technology, ACM Press, New York, 2002. pp. 111–120.


	Enhancing general-purpose tools with multi-state previewing capabilities
	Introduction
	Design practice
	Computer-based tools for design
	Implications for computer-based design tools
	Considering design practices using computer-based tools
	The Single Sate Document Model

	Multi-state previewing tools
	Specific implementations
	A framework for multi-state previewing tools
	Reflecting on the framework

	Summary and opportunities for future work
	References


