
Variation in Element and Action: Supporting
Simultaneous Development of Alternative Solutions
Michael Terry, Elizabeth D. Mynatt

Everyday Computing Lab, GVU Center
College of Computing, Georgia Tech

Atlanta, GA 30332
{mterry, mynatt}@cc.gatech.edu

Kumiyo Nakakoji, Yasuhiro Yamamoto
Knowledge Interaction Design Lab, RCAST

University of Tokyo
4-6-1 Komaba, Meguro 153-8904, Japan
{kumiyo, yxy}@kid.rcast.u-tokyo.ac.jp

ABSTRACT
The complexity of many problems necessitates creating and
exploring multiple, alternative solutions. However, current
user interfaces do not cleanly support creating alternatives
at a time when they are likely to be discovered: as users
interactively modify data. This paper presents Parallel
Paths, a novel model of interaction that facilitates
generating, manipulating, and comparing alternative
solutions. In contrast to existing approaches such as
automated history capture tools, Parallel Paths emphasizes
the active, simultaneous development of multiple,
alternative solutions. We demonstrate this model of
interaction in Parallel Pies, a user interface mechanism
developed for image manipulation tasks that allows users
to: easily create solution alternatives as they interact with a
command; embed the alternatives in the same workspace;
manipulate the alternatives independently or simultaneously
as if they were the same object; and perform side-by-side
comparisons of each. Results from an initial evaluation are
presented, along with implications for future designs.

Categories & Subject Descriptors: H.5.2. [Information
Interfaces and Presentation]: User Interfaces – Interaction
styles

General Terms: Design, Experimentation

Keywords: Exploration, experimentation, what-if tools,
interaction models, parallel exploration

INTRODUCTION
For many problems, a single “correct” solution does not
exist. Instead, a variety of solutions can be developed, each
possessing its own unique set of strengths and weaknesses.
For example, there is no single, best solution for the design

of a building, software system, or consumer product: new
designs can always be created, and old ones improved [24].
These types of problems are often referred to as ill-defined
problems [23,25], and span the range from design problems
to relatively common tasks such as writing.

The lack of one correct solution often leads to the
development of multiple potential solutions, either as part
of an explicit process, or out of necessity. For example,
early in the problem solving process, experienced
practitioners often intentionally create several rough ideas
to better understand the problem and the client’s needs
[14,15,21]. Later, as ideas are instantiated, alternatives are
also explored on an ad-hoc basis when it is unclear how to
best implement individual elements of the solution [27].

While a number of tools have been developed to support the
production of rough solution ideas early in the problem
solving process (e.g., [9,13,16]), less attention has been
paid to supporting the exploration of alternatives when
actively operating on data in later implementation phases.
In these later phases, users often need to slightly vary
commands and their parameters to develop and explore
alternative solutions to elements of the entire solution. For
example, when manipulating data through a command
dialog box, users may find several possible command

Figure 1. Parallel Pies allows users to embed and
visualize multiple solution variations in the same space.
Above the user has created and embedded three
variations of a star in the same workspace.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

711

settings equally attractive and wish to pursue them in
parallel. However, current interfaces do not afford the fluid
generation of new alternatives at the point of operating on
data. Instead, users must put the operation “on hold,”
duplicate their data, then re-establish the original context
for each variation they wish to pursue. Furthermore, any
variations produced become separate entities that must be
manipulated independently. This limitation can be
cumbersome when the variations produced are more similar
than they are different, since similar variations likely
require similar treatment as they are further developed.

To better support the practices of generating, manipulating,
and comparing multiple solution instances, we introduce a
novel interaction model called Parallel Paths. Parallel
Paths raises the concept of a solution variation to a first-
class object in the interface to allow users to:

• create new solution variations before, during, and
after invoking a command,

• embed alternative solutions within the same
workspace to facilitate direct comparisons, and

• manipulate the variations independently or
collectively, as a whole.

We demonstrate the principles of Parallel Paths in the
context of an image manipulation application augmented in
the following ways:

• Command dialog boxes introduce a new option,
Add Variation, which allows users to add the
currently previewed result as a new variation to the
document

• Variations are embedded directly within the same
document and kept viewable through an
interaction mechanism called Parallel Pies (Figure
1). This tool evenly divides the document to show
portions of each variation side-by-side

• Commands are augmented to allow users to
modify one or more variations simultaneously

• Any variation can be duplicated to create a new
variation

• Each variation maintains a complete history of all
its prior states, initially adopting the history of its
source. Thus, users can duplicate a variation, then
return to a previous state to pursue an alternative
path

To motivate the need for this augmented model of
interaction, we first describe characteristics of ill-defined
problems and how these properties affect the problem
solving process. We then review two studies of expert
practitioners that argue for the need to develop multiple,
potential solutions throughout the problem solving process.
With this motivation in place, we examine current interface
support and argue that existing tools do not sufficiently

meet the need to generate and manipulate variations when
working with precise data representations. To address this
need, we introduce the Parallel Paths interaction model and
present our implementation of this concept in Parallel Pies,
an interface mechanism designed to support the production,
manipulation, and evaluation of alternatives in an image
manipulation application. Results from an initial round of
user studies suggest that this interface mechanism can
enhance workflow for a number of tasks. We conclude by
discussing how these concepts may map to other domains.

ILL-DEFINED PROBLEMS AND SOLUTION VARIATIONS
Ill-defined problems arose as a focused topic of research in
the 1960’s when Walter Reitman made an important
distinction between well-defined problems, and what he
termed ill-defined problems, or problems with poorly
defined operators and goals [23]. Prior to making this
distinction, research in problem solving primarily
concentrated on well-defined tasks, such as the studies
conducted by Newell and Simon (summarized in [20]) that
investigated how people solved problems with well-defined
goals and states, such as cryptarithmetic. In drawing the
line between these different types of problems, Reitman
claimed that most real-world problems, such as design
tasks, are ill-defined and qualitatively different from well-
defined problems in form, complexity, and method of
solution.

Subsequent research by design theorists, cognitive
scientists, and psychologists has refined these distinctions
and added weight to Reitman’s claims through studies
comparing problem solving methodologies for both types of
problems (e.g., [8]). Rittel [24] observes that the lack of
well-defined evaluation criteria means that solutions to ill-
defined problems are neither right nor wrong, only better or
worse. Thus, solutions can always be improved, and
declaring a solution “done” is as much a function of the
availability of resources (e.g., time, money) as it is a
measure of the suitability of the solution to the task [25].

To help navigate the inherent thorniness of ill-defined
problems, experienced practitioners rely on sets of
strategies developed over time. One such strategy is to
generate multiple, alternative solutions to cope with the
lack of precise goals and evaluation criteria [4,14,15]. In
two studies of expert practitioners, this practice was found
throughout the problem solving process. We review these
studies and their implications next.

Working with Variations in Practice
In a study of website design practices, Newman and Landay
[21] found professional designers create a number of
alternative solutions as part of an explicit, planned process
in the initial problem solving stages. The variations
produced were largely developed using informal tools and
representations, such as hand-drawn pencil and paper
sketches, and constituted “rough ideas” lacking specific
details. The practices observed echo those found in

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

712

numerous other studies of design practices (e.g., see
[14,15]).

A study conducted by Terry and Mynatt [27] analyzed the
practices of expert users of an image manipulation
application and also found users develop variations as part
of the problem solving process. These variations were
produced across a range of problem domains, including
user interface design, image restoration, and artistic
endeavors. However, in contrast to the type of variations
reported in the website design study, the alternative
solutions produced in this study differed in origin, size, and
granularity. While the website designers produced rough
variations as part of a planned process, this study found
evidence of their production throughout the problem
solving process, most often in response to difficulties
encountered in implementation. Furthermore, these
variations arose as users worked with, and operated upon,
precise data representations, as opposed to informal
representations such as sketches. For example, when
designing a user interface, variations of button styles would
be explored to determine which would work best with the
overall theme of the interface. Because these alternatives
targeted individual elements of the overall solution, they
were substantially smaller in size and granularity than
variations produced as part of an initial exploratory phase.
In short, users demonstrated a need to vary their actions
and operations in order to produce variations of elements of
an overall solution.

Iterations vs. Variations
It is critical to note that solution variations observed in both
studies are not the same as iterations of a solution. Because
iterations and variations play functionally different roles in
the problem solving process, we wish to draw a sharper
distinction between these two classes of solutions.

For the purposes of this paper, we define variations to be a
user-designated set of distinct, alternative solutions to a
given problem at a point in time, while we define iterations
to be versions of the same solution at different points of
revision. Variations arise in moments of ambiguity and
uncertainty, when the problem solver has inadequate
information to choose one solution over another. Their role,
then, is to uncover the advantages and disadvantages to a
variety of approaches: lessons learned from developing
each variation feed back into, and further inform, the
problem solving process. For example, in the website
design study, designers developed multiple variations to
both explore the design space and to learn the client’s true
needs and desires. In the image manipulation study,
variations arose at implementation time, when it was
unclear how to best solve a sub-problem.

Iterations, as we define them here, represent different stages
of evolution for the same solution. Returning to the website
example, once the client’s wishes were better understood, a
single design was chosen then implemented. Iterations
represent instances of that design as it is gradually

implemented and revised, and are a natural by-product of
developing and revising a single solution.

While we make a distinction between these two different
types of solution instance, we are not claiming they are
mutually exclusive. For example, a previous iteration can
simultaneously be considered an iteration and an alternative
solution by a user. The critical difference is the role the
solution instance plays for the user in the problem solving
process at a specific point in time.

The differences between variations and iterations was
noticed in the website design study, and led to separate
recommendations for interface support structures: tools that
help users create and “manage different variations of design
ideas” (italics theirs), and tools that track the history and
evolution of the overall solution. Building on these separate
recommendations, we examine current interface support for
variations and show aspects currently unaddressed by
existing tools.

Iteration vs. Variation: Holes in Interface Support
Current mechanisms and methods for working with
multiple solution instances (both variations and iterations)
can be broadly divided into the following categories:

1. Prototyping and sketching tools that encourage the
rapid production of rough solution ideas (e.g.,
[9,13,16])

2. Tools that track and/or save snapshots of the entire
document. These include history tracking tools
external to the application (e.g., version control
systems such as CVS), enhanced history
mechanisms strongly integrated with the user
interface (e.g., [1,5,6,11,12]), and basic operations
that allow users to save copies of their document
(“Save As…”)

3. Ad-hoc user strategies of embedding alternatives
directly within the document. For example,
creating a new layer for each variation of a
graphical element in an image manipulation
application, or selectively commenting out
sections of code when developing software

4. Enhanced preview mechanisms and “what-if”
tools (e.g., [10,19,28]) that provide a broader view
of potential future states

While each of these tools or methods can be used in the
service of exploring variations, the image manipulation
study suggests a number of ways they can be improved. In
particular, existing tools: do not allow users to designate
variations when modifying their data; lack strong cues
about relationships between variations; and cannot
simultaneously manipulate all variations at once. We
explain each limitation in turn.

During implementation, practitioners may unexpectedly
encounter interesting alternatives as they manipulate their

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

713

data. For example, when interacting with a command’s
dialog box, several different parameter settings may appear
promising. When these alternatives are discovered, users
may wish to actively pursue them to see if they result in a
better overall solution. Users may also need to pursue
alternatives when they have difficulty solving a particular
problem.

Current computer interfaces make it difficult to instantiate
and follow multiple threads as users actively modify data.
Enhanced previewing tools such as Side Views [28] or
Design Galleries [22] provide a broad overview of
possibilities (with some capability to view several steps
ahead), but the previews are transient – users must
ultimately commit to only one modification of their data.
Traditional dialog boxes share this same limitation. As a
result, users must manage the task of instantiating multiple
variations before invoking a command (e.g., taking a
snapshot of the data before operating on it), or after
invoking a command (e.g., backtracking to a previous state
to pursue an alternative). While this process does not
prevent users from exploring variations, it does force them
to repeatedly reestablish the context that provided the initial
source of inspiration.

History tracking tools facilitate the tracking of individual
variations as they are made, but do so by storing separate,
self-contained snapshots for each variation. Storing
variations as separate snapshots has the effect of reducing
the immediacy of the variations from the work
environment: each variation must be loaded into its own
separate window, creating competition for attention and
screen space. Furthermore, semantic relationships between
variations can be lost as the number of snapshots increases.
For example, after exploring a number of alternatives, users
may want to work with only a handful of the variations.
However, while history tracking tools encode the lineage of
a variation, they provide few facilities to indicate
semantically meaningful relationships between the stored
data. As a result, the most noteworthy solution instances
may be scattered amongst intermediate stages of little
interest.

Storing variations as distinct snapshots also has a more
subtle effect: it forces users to choose which snapshot to use
for continued development of other portions of the solution.
That is, users may need to further revise other elements of
the overall solution independent of the content that varies
from alternative to alternative. However, since interfaces do
not allow users to directly modify multiple variations
simultaneously, users must either manually replicate any
future revisions, or merge the differences. Notably, this
problem does not exist when variations are embedded
within the same document: Since there is only one
document instance, users do not need to concern themselves
with synchronizing changes to other content in the same
document.

In summary, current tools provide a number of critical
services for managing multiple solution instances, but they
lack facilities for efficiently working with variations later in
the design process: users cannot designate alternatives at
the point of manipulating the data; semantic relationships
between variations are not recognized by the interface; and
variations cannot be simultaneously manipulated. To
address these issues, we combine some of the advantages
and affordances of the existing tools to synthesize an
augmented model of interaction that further raise the status
of a variation as a first-class object in the interface.

PARALLEL PATHS MODEL OF INTERACTION
Parallel Paths is an enhanced model of interaction that
improves upon existing models of interaction by providing
more explicit support for generating, manipulating,
managing, and comparing solution variations. While current
interfaces require commitment to only a single set of
parameters when applying a command, Parallel Paths
relaxes this requirement by allowing users to add all
interesting results discovered. Each alternative added is
embedded directly within the same workspace to increase
accessibility and facilitate comparisons. Furthermore, users
can operate on the variations simultaneously or
individually, as necessary. Together, these enhancements
create an environment that promotes and scaffolds deeper,
more sustained explorations of alternatives, especially when
interacting with data representations and commands that
leave no room for ambiguity or indecision.

IMPLEMENTING PARALLEL PATHS
To illustrate the application of these principles, we describe
the construction an image manipulation application
enhanced with the concepts of Parallel Paths.

Generating and Designating Variations
There are three conceptually different situations in which a
user may discover it is necessary to explore alternatives:

1. Before a command is invoked. In this situation, the
user realizes that the current state of the problem
will necessitate exploring a number of alternatives

2. While interacting with the command. At this point,
users may discover a number of interesting
variations, or be unable to find one that perfectly
fits the problem

3. After a command has been applied. In this case,
the results obtained are not as hoped, though not
without value. This realization may come
immediately after invoking a command, or several
steps later, when it becomes clearer that earlier
actions must be refined

To support the generation of variations under these three
conditions, users must be able to duplicate a document,
create a variation while interacting with a command, and
revisit past states of a document without losing the current
state.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

714

Figure 2. Command dialog boxes are augmented with the
capability to add the current result as a new variation (top
right button), or to apply the command to all variations
simultaneously (bottom bight button).

Figure 3. The Parallel Pies tool can be rotated and moved
to selectively show all or part of a variation. A paddle
extending from the hub controls the angle of rotation.

Document Duplication
In our application, users can duplicate the current document
by invoking the “Create New Variation” command from a
pull-down menu. The document, including its history, is
copied and embedded within the same workspace.
Visualization of the multiple variations is handled by the
Parallel Pies tool, described below.

Adding Variations within Commands
To support the creation of variations while modifying data,
users can insert the currently previewed result as a new
variation to the workspace. Command dialog boxes now
feature an “Add Variation” command (Figure 2) that
duplicates the document, applies the command with its
current settings, and inserts the result in the workspace.

Exploration of variations while manipulating data is further
enhanced in our application by incorporating Side Views
[28], an enhanced previewing mechanism that
automatically generates sets of previews for each command
parameter. Adding Parallel Paths to this tool facilitates
more sustained exploration by enabling users to selectively
add any interesting results to the workspace.

Duplicating Lineages and Skating Through Time
To support the creation of variations after a command has
been applied, each variation maintains a history of all prior
states and commands leading to its current state. When
users duplicate a particular variation, its lineage is also
duplicated. The copied history enables users to create
variations after applying a command: when a result is not
what was anticipated, but still worth keeping, users can
duplicate the current state then non-destructively return to a
previous state through a function we call skating.

Skating allows users to traverse the timeline of a variation
without needing to invoke “undo.” This additional
functionality addresses a number of issues. First, undo is
often overloaded in its use, taking on many responsibilities
beyond simply correcting errors. For example, users may
create a variation, then wish to return to a previous state to
explore an alternative path. Using undo to navigate a
history for this purpose is risky, since an alternative may be
accidentally lost when undoing to a previous state. Skating
reduces this risk by offering an independent operation for
navigating history.

Second, skating helps reduce potential ambiguity
surrounding the interpretation of undo when working with
multiple variations in the same workspace. For example,
should “undo” undo the last action performed in the whole
application, or the last action applied to a particular
variation? These problems are similar to those encountered
in the design of Flatland, a whiteboard application that
hosts self-contained workspaces that can also interact with
one another [5]. To avoid ambiguity, skating explicitly
fulfills the role of retrieving past states.

Parallel Pies: Supporting Direct Embedding and
Comparison of Multiple Variations in a Workspace
One of the advantages of the ad-hoc practice of manually
embedding variations within the document itself (for
example, two versions of a paragraph, one after the other) is
that the variations are ready-at-hand: there is no
intermediate layer required to load or save them, they are
highly accessible, and they lend themselves to basic
comparisons. As previously discussed, they also allow other
parts of the solution to be manipulated independent of the
variations: changes do not need to be “merged” or
duplicated as they would be if separate document instances
were created for each variation in a history tracking system.

Building on this concept, our interface embeds the
variations directly within the same workspace and offers
Parallel Pies to selectively show “slices” of each variation
(Figures 1, 3). Parallel Pies divides the document by
creating wedges that radiate outwards from a central hub,
with each variation mapped to a single wedge. The hub can

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

715

be repositioned and rotated to reveal different areas of the
individual variations (Figure 3). A “gutter” surrounding the
image provides space for the hub to be dragged off to the
side; when pulled into the gutter, the increased wedge size
affords a larger view of a variation, allowing users to focus
on only one at a time. Notably, using other schemes to
divide the space (such as a grid), would not have this same
affordance.

Parallel Pies also acts as the mechanism by which users
select a variation when they need to modify only one at a
time. Users “select” a variation by allocating it the most
screen space (for example, by pulling the hub to the side).
The choice of this mechanism was driven through user
testing that revealed that users expected their actions would
be applicable to only the most visible variation. A more
detailed description of this issue is detailed in the
evaluation section.

The visualization provided by Parallel Pies works
particularly well when the differences between images are
relatively minor. When variations are more distinct, the
ability to reposition the hub in the gutter helps reduce visual
clutter and confusion by showing only one variation at a
time.

Selective Manipulation of One or More Variations
Users can choose to modify a single variation, or all
variations at once. An “Apply” button in a command’s
dialog box (Figure 2) affects the most visible variation
without dismissing the window. Users can modify all
variations at once by pressing the “Apply to All Variations”
button.

Distinguishing Between Variations
Moving to a model of interaction that allows and recognizes
multiple potential states at one time necessitates a few other
changes to the interface. Most obviously, it requires
additional feedback to the user so they know what
variations they have created, and which they will effect
when interacting with the command. Accordingly, we
provide a number of cues throughout the interface.

A thumbnail-based summary of all variations is placed on
the right side of the window (Figure 1). As an additional
cue, we decorate variations with tags throughout the
interface to help users differentiate between them when
they are visually similar. Small black boxes with a unique
letter are positioned over the variations’ thumbnails on the
side of the window, in the “before” view of a preview, and
on the edge of variations’ slices in the workspace.

EVALUATING PARALLEL PATHS AND PARALLEL PIES
To evaluate the concepts of Parallel Paths, we performed
think-aloud sessions with three expert users of image
manipulation applications. These sessions lasted
approximately one hour each. For each, we demonstrated
the application’s new features, then asked the user to
explore the interface while working on an image. No

specific goal was given for users to accomplish. Two types
of qualitative data were gleaned from this evaluation:
usability information and the appropriateness of this
interaction model for enhancing workflow.

In general, the users responded favorably to the new
additions. Users commented that the overall feature set
would be particularly well suited to tasks such as image
toning and print work, which often require developing a
number of variations for an image before finding one that
prints well. One user suggested a use of the system we had
not previously considered, namely, cel animation.
Individual cels of an animation share similarities to
variations: each is unique, though much of the content is
shared from cel to cel. Using our system would allow users
to more easily compare differences between adjacent cels,
and would also allow them to apply changes to many cels at
the same time.

While most users understood the new model of interaction,
a number of issues were uncovered in earlier designs that
increased the time required to fully understand and use the
new capabilities. These centered on the need to be able to
distinguish between variations. In our initial design, we did
not explicitly label the variations, leading to a problem of
correspondence within the interface: users could not always
match variations between the thumbnail view, the
document, and the command’s previews. This led us to add
unique tags to all representations of the variations in the
interface.

Earlier designs also employed alternative mechanisms for
choosing which variation to manipulate. We briefly
describe the evolution of this selection mechanism and the
lessons learned in its development.

In our initial design, users clicked on pie slices to select
which slice(s) to modify. While this approach had the
advantage that users could directly click on the item to
manipulate it, it also had the consequence of adding an
extra layer of selections: users could now select variations
as well as individual objects in the document.

The next mechanism we implemented allowed users to
select the variation from within the command’s dialog box.
Buttons in the shape of arrows below the “before” preview
let users cycle between variations. However, users did not
readily understand the buttons’ functionality, nor could they
easily discover this method of choosing which variation to
manipulate.

Our current implementation builds on a behavior that
emerged through testing, namely moving the pie’s hub to
the side to concentrate on one variation at a time. When the
interface showed only one variation at a time, users
expected that commands would only affect that variation,
since others were not visible. Therefore, we adopted this
convention and modified commands to update their
previews accordingly.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

716

RELATED WORK
In his work developing the subjunctive interface [17,18],
Aran Lunzer has similarly identified the need to be able to
explore multiple paths simultaneously. The subjunctive
interface answers this need by allowing users to select
multiple values of interest for a command’s parameters,
then execute the command consecutively for each variation.
For example, in a cannon simulation [18], users can select
multiple values for objects’ properties (such as the angle of
the cannon), then run the simulation to watch all
possibilities execute simultaneously. The concepts of
Parallel Paths builds on many of the concepts put forth by
the subjunctive interface, while providing a set of concrete
user interface mechanisms and conventions to support the
generation, manipulation, and comparison of variations.

A number of systems have facilitated the process of
exploring variations by reducing the work required to track
and store those variations. Enhanced history mechanisms,
such as those found in [5,6,11,12], automatically record the
evolution of a user’s work through a tight integration with
the work environment. Similar systems have been
developed with an eye towards supporting collaborative
editing of documents (for example, Timewarp [6]).

Other history-tracking tools put less emphasis on tracking
every intermediate state, and instead focus on making it
easy to selectively store salient versions of the document as
it is developed. For example, a bookmark facility attached
to a 3D modeling tool [29] provides a thumbnail browser of
past states, while Adobe Photoshop’s [1] “snapshot” feature
allows users to save and reload different instances of the
document. External version control systems such as CVS
also provide capabilities to track the evolution of a
document, but are more loosely coupled with most
interfaces.

Each of the history tools described above provides valuable
services when working through a complex problem, but are
built with the assumption that only one variation can be
open and manipulated at a time. Parallel Paths extends these
concepts by allowing users to simultaneously interact and
operate on the variations.

In addition to history tracking tools, a number of systems
have been constructed that allow editing of a history. For
example, Graphical Editable Histories [12] allows users to
modify previous commands, with changes propagating
down the timeline. These tools are especially well suited for
revising past decisions, and would nicely compliment
Parallel Paths’ ability to generate variations of solutions.

See-Through Tools, such as Magic Lenses [2], and
enhanced previewing mechanisms (e.g., [10,22,28]) afford
rapid exploration of possibilities, but do not allow the user
to easily spin off interesting results into new variations.

Several commercial applications include tools that afford
side-by-side comparisons of two alternatives within the
workspace. These tools offer “split-screen” previews that

divide a document to show both unmodified and modified
content. PixelNance [3] provides split-screen previews with
a visualization tool that can be operated similarly to Parallel
Pies: a movable, rotating divider line allows users to
selectively view portions of the original and modified
image while adjusting a command’s parameters. Sonic
Foundry’s Vegas [26] also provides simultaneous viewing
of the original and previewed result in the same document,
but allows users to arbitrarily define a rectangular preview
region. While these tools share a common visualization
mechanism with Parallel Pies, the function of the tools
differ: The existing tools focus on offering transient
previews, while Parallel Pies allow users to view and
manipulate a set of persistent alternatives.

Finally, in the domain of image manipulation, applications
such as the GIMP [7] or Photoshop [1] provide the ability
to assign individual graphical elements to separate layers.
The image manipulation study [27] found layers used as an
ad-hoc storage facility for variations. While this strategy
lets users store variations, it lacks the benefits of a set of
tools dedicated to generating, manipulating, and comparing
variations. For example, it does not address the need to
create new variations while interactively manipulating data.

FUTURE DIRECTIONS
We have argued for the need to more easily generate,
manipulate, and compare separate, viable solution
alternatives when working with precise data formats. To
that effect, we have proposed augmenting user interfaces
with capabilities to designate, and therefore accumulate,
variations before, during, and after manipulating data. We
have demonstrated these principles in an image
manipulation application augmented with Parallel Pies, a
tool suited to working with multiple variations in the same
workspace.

The ultimate goal of this research is to design and develop
computational tools that allow users to more easily
experiment when solving ill-defined problems. This initial
effort has focused on the domain of image manipulation
and its highly graphical, visually-based tasks. While the
tools developed have been matched to this problem domain,
we believe there is opportunity to apply the basic principles
to other domains, such as writing or software development.
Our experience in building these tools, as well as some of
the authors’ experiences building tools to support the
writing process [19], provide some insight into how this
transfer may occur. In particular, it seems clear that strict
adherence to the WYSIWYG style of presenting data is not
necessary, and may in fact be counter to facilitating
exploration. This argument has been made before,
particularly with respect to the need for sketch-like tools
(e.g., [13]), but we feel it applies equally well to interfaces
devoted entirely to manipulating precise data
representations, whether the data are images, text, or some
other format. The challenge moving forward is to
understand how these principles generalize across task

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

717

domains so a user’s document can always retain a feeling of
plasticity, even when containing highly precise data
formats.

REFERENCES
1. Adobe Photoshop. http://www.adobe.com
2. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and

DeRose, T.D. Toolglass and Magic Lenses: The see-
through interface. In Computer Graphics, 27 (Annual
Conference Series), 1993, 73-80.

3. Caffeine Software, Inc. http://www.caffeinesoft.com
4. Cross, N. Design cognition: Results from protocol and

other empirical studies of design activity. Chapter 5 in
Design Knowing and Learning: Cognition in Design
Education. Eastman, C., McCracken, M., and
Newstetter, M. (eds.). Elsevier Science, 2001, 79-103.

5. Edwards, W.K., Igarashi, T., LaMarca, A., and Mynatt,
E.D. A temporal model for multi-level undo and redo. In
Proceedings of UIST 2000, 31-40.

6. Edwards, W.K., and Mynatt, E.D. Timewarp:
Techniques for autonomous collaboration. In
Conference Proceedings on Human Factors in
Computing Systems (CHI 1997), 218-225.

7. The GNU Image Manipulation Program (GIMP).
http://www.gimp.org

8. Goel, V., and Pirolli, P. The structure of design problem
spaces. Cognitive Science, 16(3), 1992, 395-429.

9. Groos, M.D. and Do, E.Y.-L. Ambiguous Intentions. In
Proceedings, ACM Symposium on User Interface
Software and Technology (UIST ’96), 183-192.

10. Jankun-Kelly, T.J., and Ma, K.L. Visualization
exploration and encapsulation via a spreadsheet-like
interface. IEEE Transactions on Visualization and
Computer Graphics, 7(3), 2001, 275-287.

11. Klemmer, S.R., Thomsen, M., Phelps-Goodman, E.,
Lee, R., and Landay, J.A. Where do web sites come
from? Capturing and interacting with design history. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 2002), 1-8.

12. Kurlander, D., and Feiner, S. A Visual language for
browsing, undoing, and redoing graphical interface
commands. In Visual Languages and Visual
Programming. S.K. Chang (ed.). Plenum Press, New
York, NY, 1990, 257-275.

13. Landay, J., and Myers, B. Sketching Interfaces: Toward
More Human Interface Design. In IEEE Computer,
34(3), March 2001, 56-64

14. Lawson, B. Design in Mind. Architecture Press. 1997.
15. Lawson, B. How Designers Think: The Design Process

Demystified. Architectural Press. 1997.
16. Lin, J., Newman, M.W., Hong, J.I., and Landay, J.A.

Denim: Finding a tighter fit between tools and practice

for web site design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI 2000), 510-517.

17. Lunzer, A. Choice and comparison where the user wants
them: Subjunctive interfaces for computer-supported
exploration. In Proceedings of IFIP TC, 13
International Conference on Human-Computer
Interaction (INTERACT '99), 474-472.

18. Lunzer, A. Towards the subjunctive interface: General
support for parameter exploration by overlaying
alternative application states. In Late Breaking Hot
Topics, IEEE Visualization 1998, 45-48.

19. Nakakoji, K., Yamamoto, Y., Reeves, B.N., and Takada,
S. Two-Dimensional Positioning as a Means for
Reflection in Design. Design of Interactive Systems
(DIS 2000), 145-154.

20. Newell, A., and Simon, H.A. Human Problem Solving.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1972.

21. Newman, M., & Landay, J. Sitemaps, Storyboards, and
Specifications: A Sketch of Website Design Practice. In
Proceedings of Designing Interactive Systems (DIS
2000), 263-274

22. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pifster,
H., Ruml, W., Ryall, K., Seims, J., and Shieber, S.
Design galleries: A general approach to setting
parameters for computer graphics and animation. In
Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, 1997,
389-400.

23. Reitman, W.R. Cognition and Thought. John Wiley &
Sons, Inc., 1965.

24. Rittel, H.W.J., and Webber, M.M. Planning Problems
are Wicked Problems. Chapter in Developments in
Design Methodology, 1984, 135-144.

25. Simon, H. The structure of ill-structured problems.
Artificial Intelligence, 4:181-203, 1973.

26. Sonic Foundry. http://www.sonicfoundry.com
27. Terry, M. and Mynatt, E.D. Recognizing creative needs

in user interface design. In Proceedings of the Fourth
Conference on Creativity & Cognition, 2002, 38-44.

28. Terry, M. and Mynatt, E.D. Side Views: Persistent, on-
demand previews for open-ended tasks. In Proceedings
of the 15th Annual ACM Symposium on User Interface
Software and Technology (UIST 2002), 71-80.

29. Verlinden, J.C., Igarashi, T., and Vergeest, J.S.M.
Snapshots and Bookmarks as a Graphical Design
History. In Proceedings of International Design
Conference 2002, Dubrovnik, Kroatia, 567-572.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

718

