
ABSTRACT
We introduce Side Views, a user interface mechanism that
provides on-demand, persistent, and dynamic previews of
commands. Side Views are designed to explicitly support
the practices and needs of expert users engaged in open-
ended tasks. In this paper, we summarize results from field
studies of expert users that motivated this work, then discuss
the design of Side Views in detail. We show how Side
Views’ design affords their use as tools for clarifying,
comparing, and contrasting commands; generating
alternative visualizations; experimenting without modifying
the original data (i.e., “what-if” tools); and as tools that
support the serendipitous discovery of viable alternatives.
We then convey lessons learned from implementing Side
Views in two sample applications, a rich text editor and an
image manipulation application. These contributions
include a discussion of how to implement Side Views for
commands with parameters, for commands that require
direct user input (such as mouse strokes for a paint
program), and for computationally-intensive commands.

SUPPORTING OPEN-ENDED TASKS
We are interested in developing user interface mechanisms
to support users engaged in open-ended tasks, which we
define as those for which there exist no clear, predefined
sequence of steps to arrive at an acceptable solution. Such
tasks are unstructured, with goals that cannot always be
precisely defined in advance. The nature of these tasks
require people to approach them on a case-by-case basis,
drawing upon past experience and knowledge to discover
and construct an acceptable final solution [20]. Examples of
open-ended tasks include traditional design problems such
as those found in architecture, industrial design, and
software design, as well as relatively smaller activities, such
as writing a paper or color-balancing an image.

Solving an open-ended task requires domain-specific
knowledge, but also requires more general-purpose
problem-solving practices, such as performing experiments
to discover the most viable approach to solving the problem.
For example, when color balancing an image, an expert user
may consider multiple operations to be equally applicable at

a particular moment. To assist with her decision, she may
make copies of her image, then apply each operation to a
different copy to find the best solution to her problem.

While many applications are designed to support specific
open-ended tasks, there is a lack of user interface
mechanisms crafted to support the broader, more general
practices. For example, interfaces typically do not explicitly
support the practice of experimenting with data (e.g.,
branching to try multiple alternatives in parallel). Instead,
users must devise strategies such as saving back-up copies
of their documents before experimenting, to ensure that they
do not accidentally modify their original data beyond repair.
However, requiring users to perform even such a small step
can impose enough of a barrier to discourage these
beneficial practices. The “undo” mechanism is a notable
exception: Undo supports some aspects of open-ended
tasks, such as simple experimentation, but it is relatively
unique both in terms of its broad applicability and its
versatility.

We would like to add to the interface designer’s toolbox by
contributing broadly-applicable user interface mechanisms
geared towards supporting practices generally found in
open-ended tasks. To this end, we present Side Views, a user
interface mechanism that provides on-demand, persistent
previews of a command (see Figure 1). Side Views use the
tool-tip metaphor to present the previews: Side Views
appear after a user hovers the cursor over an object in the
interface for a short period of time. However, unlike a
normal tool-tip, users can interact with the Side View, for
example, choosing to view ranges of previews for

Figure 1: Side Views provide on-demand previews of the
effects of commands within a pop-up window. In this
figure, a preview of the “bold” command is shown applied
to the current selection.

 Side Views: Persistent, On-Demand Previews for
Open-Ended Tasks

Michael Terry, Elizabeth D. Mynatt

Everyday Computing Lab, GVU Center
College of Computing, Georgia Tech

Atlanta, GA 30332-0280
{mterry, mynatt}@cc.gatech.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’02, October 27-30, 2002, Paris, FRANCE.
Copyright 2002 ACM 1-58113-488-6/02/0010…$5.00.

Volume 4, Issue 2 71

parameters (called parameter spectrums). Additionally,
users can make Side Views persist, enabling comparisons
between commands. These persistent previews can also be
chained together to view the effect of multiple commands
applied in succession.

In this paper we present the design of Side Views and
demonstrate a range of uses for this tool, focusing on those
that enhance practices commonly employed by expert users.
We argue that Side Views offer a natural extension to an
existing, lightweight user interface mechanism (tool-tips),
while allowing users to:

• perform simultaneous comparisons of multiple
commands;

• compare multiple instantiations of the same command,
thus aiding in the efficient and informed selection of a
command and its parameters;

• create alternative visualizations of their data;

• experiment with possibilities without committing to any
changes to the original data (“what-if” tools);

• customize the interface to enhance workflow; and

• serendipitously discover viable alternatives to a planned
course of action.

The rest of the paper is structured as follows: First, we
provide a more detailed description of common expert
practices and needs in open-ended tasks, derived from field
interviews and observations of expert users, and prior
research in this domain. We then contrast these user
practices with those supported by current user interfaces,
uncovering limitations in the process. The design of Side
Views is then presented, and we show how Side Views
address some of these limitations through their various uses.

Next, we convey lessons learned from implementing Side
Views in two applications, a rich text editor and an image
manipulation program. These lessons include contributions
of interest to implementers and designers, such as how Side
Views can be implemented for commands with parameters,
for commands that require direct input (such as text input in
a word processor, or pointer input for a paint program), and
for computationally-intensive commands. We conclude with
a review of related work, and opportunities for future
research.

CHARACTERIZING OPEN-ENDED TASKS
To understand typical expert practices in open-ended tasks,
we conducted field interviews and observations of
professional users of an image manipulation program. The
users we observed employ this application in two primary
tasks, image toning (e.g., color correction), and the design
and creation of user interfaces. As we discuss these findings,
it is important to keep in mind that these individuals are
experts and fully understand their task and tools; the
processes described are not those employed by novices
unfamiliar with the interface or the problem space.

Our study revealed a common set of intertwined practices
that echo those described by prior research investigating the
design process (e.g., [19, 20]). These practices can be
summarized as experimentation, branching, evaluation, and
iteration.

Experimentation comprises discovering available options
and testing out hypotheses. In a computer application, this
process includes such activities as trying and undoing
various commands to find the best option amongst a set of
commands, as well as trying and undoing different
parameter settings for the same command.

Branching is a process of exploring multiple paths in
parallel, and is typically enacted through such strategies as
saving duplicate copies of a document, or embedding
multiple versions within the document itself (for example,
creating alternative versions of a user interface widget side-
by-side, or multiple versions of the same paragraph, one
after the other).

Evaluation serves to assess one’s progress with respect to
the envisioned solution and to past states. Evaluation can
occur directly (e.g., placing different versions side-by-side)
or indirectly (e.g., between the current state and an
envisioned future state, or a remembered past state).
Additionally, and importantly, evaluation can occur using
alternative representations of the data. For example, in
image toning an individual may assess one’s progress by
examining the individual color channels of the image.
Alternative representations help the user ignore some details
of a problem while concentrating on others [19, 20].

Iteration is the process of incrementally solving portions of
a problem, and building upon and combining these
individual solutions.

As mentioned, these four basic processes are interconnected
and are often used in concert with one another. For example,
evaluation occurs whenever one experiments with several
different commands, searching for the “best” one.

While we observed these practices in the context of
computer-based activities, these practices are even more
evident in paper-based design activities, given the flexibility
of that medium (e.g., as found in [19]). However, as we
discuss next, the current design of computational tools
prevents users from fully engaging in these practices.

Clarifying the Challenge for User Interface Design:
Breaking from the Single State Document Model
While some user interface support does exist for open-ended
tasks, it is typically limited, requiring users to develop
workarounds to compensate for an interface’s deficiencies.
For example, “undo” supports near-term experimentation,
as it allows users to sequentially try and undo commands to
discover the best operation. However, we also observed its
use as an evaluation mechanism: In the image manipulation
application, users often apply a command, then quickly
undo and redo the command in rapid succession to
effectively “flash” the current and previous versions on the

72 Volume 4, Issue 2

screen. This practice affords the comparison of these two
versions, but in time, rather than side-by-side. Arguably, this
use of “undo” veers away from its original intent, and is
more indicative of a workaround intended to bend an
interface to conform to a user’s desired practices.

The Need for Multiple Realities
The need for such workarounds becomes clear if we contrast
an expert’s desired practices with the model of interaction
typically employed by current user interfaces. In particular,
the desired practices usually involve multiple versions of the
user’s data: Experimentation revolves around testing
multiple hypotheses; branching, by definition, results in
multiple versions; evaluation is the comparison of different
states; and iteration builds upon prior work. Thus, as part of
developing a solution to an open-ended task, a user makes
use of multiple realities of the problem space and solution.
However, current interfaces typically employ a model of
interaction that recognizes only one document state at a
time. We define this interaction model as the Single State
Document Model.

The Single State Document Model
The Single State Document Model is an interaction model
that requires a document to be in one state, and one state
only, at any point in time. Users progress through tasks by
applying a single operation, then operating on the changed
state.

Though conceptually simple for both user and implementor,
this interaction model imposes a serial, linear progression
through a task that is a poor fit to the practices of experts
engaged in open-ended tasks. Thus, while a user may need
to simultaneously consider multiple alternatives, the Single
State Document Model creates a form of interface “tunnel
vision” that limits the number and types of views and
actions available at any one moment. As an example, the
image manipulation program we studied offers six variants
of “blur.” The only way to unambiguously differentiate
between these different versions of blur is to actually try
each in turn, since multiple previews are not simultaneously
available. Similarly, in our field studies, we often observed
that experts spend time experimenting with parameter
settings to tweak a command’s effect. Though the experts
could often intuit the area of most interest, they still needed

time to fine-tune and confirm their choice of settings since
there is usually at most a single preview available for a
command.

While the need to experiment, create multiple versions,
iterate, etc., is strongly advocated in the actual practice of
designing user interfaces, these same processes are seldom
transferred into, and supported by, the interfaces that result
from these processes. Prior work has recognized these
limitations in existing interfaces [16], and argued for a
“subjunctive interface,” or an interface that enables users to
simultaneously explore multiple alternatives in parallel [17].
Side Views continues in the spirit of subjunctive interfaces
by providing users with a lightweight mechanism to create
multiple, simultaneous views of potential future states via
persistent previews. We turn now to a detailed description of
its design.

SIDE VIEWS: DESIGN
Side Views employ the tool-tip metaphor to provide on-
demand previews, but extend their basic design in five main
ways. Side Views:

1. display dynamic previews in the pop-up window of a
command or user interface object, as applied to the
current context,

2. support interaction,

3. can be made to persist,

4. scale to commands with multiple parameters through
parameter spectrums, or ranges of previews for a
command, and

5. can be chained together to allow for function
composition.

Dynamic Previews
Side Views provide dynamic, on-demand previews of a
command applied to a copy of the current data, similar to
the previews often found in modal dialog boxes (see Figure
2). Side Views also provide previews of the effects of other
user interface objects, such as sliders or radio buttons. For
example, in a dialog box of font styles, hovering over the
checkbox for the “underline” option elicits a Side View
previewing the user’s selected text underlined.

Figure 2: A Side View for an image manipulation application. The left illustration shows the current document, the right a
Side View for the “Polar Coordinates” filter that appears after the user hovers the cursor over the menu item.

Volume 4, Issue 2 73

Interaction
Users can interact with a Side View, for example, resizing it,
varying its parameters, or invoking the command it
represents. We discuss parameters and the issue of what
content to preview more fully below.

Persistent Side Views
When a single and/or fleeting preview is not enough for the
user’s needs, users can interact with a Side View to make it
persistent (i.e., turn it into a regular window that does not
automatically dismiss itself after a short interval). Persistent
Side Views continually update their previews to reflect the
current state of the active document. That is, as
modifications are made to the active document, the selected
region is changed, or the active document is switched to
another document, a persistent Side View automatically
updates its preview to reflect those changes (Figure 3).

Parameter Spectrums
Side Views for commands with parameters initially show a
single preview using the default (or the user’s last) settings
for a command. When a user desires to see and/or interact
with a broader range of possibilities for a single command,
Side Views can be expanded into parameter spectrums
(Figure 4). Parameter spectrums show a series of previews
across the range of values for each parameter. Initially, the
range displayed is a sampling of all possible values for a

parameter. However, the user can vary the range previewed
to focus on a specific set of values.

Each spectrum varies its previews only on the parameter it
represents. For example, if there are two parameters for an
oval, height and width, the parameter spectrum for height
uses the current setting of the width parameter, and varies its
previews in the height dimension (Figure 4 illustrates this
property in an actual filter). When one parameter’s current
value is changed, all other parameter spectrums update their
previews to reflect this new value. This behavior enables a
user to interactively vary one parameter’s settings to
understand how it affects the other parameters.

Function Composition
To view previews of two or more Side Views combined
(function composition), users can chain Side Views
together. In our current implementation, chaining
commands is supported by dragging and dropping one
preview on the other. Performing this action causes a new
Side View to appear that previews the effect of both
commands at once.

As with Side Views for a single command, users can view
and vary each command’s parameters individually.
Changing the parameters in one Side View causes
subsequent Side Views to update their previews, since later
Side Views are dependent on the output of former Side
Views. The effect is one where users can view changes
“ripple” down the chain of Side Views.

Putting Side Views to Work
Side Views’ feature set makes them amenable to a range of
tasks. At a high level, Side Views enable users to more
easily perform breadth- and depth-first searches of
possibilities, without committing to any one course of
action. In essence, Side Views foreshadow potential future

Figure 3: Side Views automatically update their preview
based on the active document, as shown above.

Figure 4: A Side View showing parameter spectrums for
two of the filter’s parameters. Note how each parameter
varies its previews only on its own dimension.

74 Volume 4, Issue 2

states so users can make more informed decisions, and
spend less time hunting for suitable operations and
parameter settings.

At a more concrete level, Side Views can be used to clarify a
command’s effect, to make comparisons, to create
alternative visualizations of the user’s data, to experiment
(“what-if” tools), to customize an interface, and as a
mechanism to serendipitously discover viable alternatives.

Clarifying the Effect of a Command
The most basic use of Side Views is to clarify the effect of a
command. Previewing the effect of a command (or its range
of values in a parameter spectrum) relieves users from the
need to internalize a model of a command and the effect of
its parameters to guide their searches. This aid is especially
useful for parameters that have seemingly arbitrary ranges
of numerical values. Thus, instead of forcing the user to
conform to the interface, Side Views represent the output of
a function in a way that can be more easily appropriated and
used by a person.

Supporting Comparisons Between Commands and
Parameter Settings
Persistent Side Views enable direct, side-by-side
comparisons between commands (as shown in Figure 3).
For example, several commands, may seem equally viable
at a particular moment (e.g., the six variants of blur
mentioned earlier). Persistent Side Views offer the user the
opportunity to simultaneously view all desired options at
once, delaying commitment to any one command until an
informed decision can be made.

Users can also instantiate the same command multiple times
to perform comparisons between completely different
parameter settings for the same command. This feature is
beneficial for complex commands that create a large space
of choices to search.

Side Views as Alternative Visualizations
Side Views provide persistent, dynamic previews of
commands, affording their use as alternative visualizations
of the current data. When used in this fashion, Side Views’
previews serve as “lenses” through which users can examine
their data, similar in effect to Magic Lenses [8]. For
example, if a user is painting an image that will be printed in
both color and grayscale, a Side View for a grayscale-
conversion command provides a grayscale visualization of
the document that the user can refer to when choosing colors
and content that will print well in both versions.

These alternative visualizations can also be used for
evaluative purposes: the alternative representations can
serve to emphasize certain features, while de-emphasizing
others, depending on the data and the operations chosen.

Side Views as “What-If” Tools
Side Views’ multiple views of potential future states make
them useful “what-if” tools that let users experiment without
requiring any changes to the original data, and without
requiring the users to create duplicate copies of their data.

This ability can help foster exploration by lowering the
barrier to simple experimentation.

Supporting Customization
Many tasks become routinized over time, yet still require
thoughtful user input for each of the steps. For example,
image toning is a process in which a user makes adjustments
to the color balance of a digital image so that it will
reproduce well in a target medium (such as a newspaper or
web browser). Typically, a small set of commands forms the
core set of operations a user will apply to an image, and the
sequence of operations will be the same for a similar batch
of images. However, each operation still requires the fine-
tuning of parameters on the part of the user, eliminating the
possibility of creating and using a macro or a script.

In such situations, users can instantiate Side Views for the
most frequently used commands, and arrange them in
convenient locations around the interface. For common
sequences, users can chain several Side Views together.
Returning to the image toning task, users can tone one
image, then rely on Side Views’ parameter spectrums to
quickly find and modify settings for subsequent images.

Facilitating Serendipitous Discovery
Both persistent and transient Side Views can facilitate
serendipitous discovery of desirable commands and
parameter settings as one works. For example, as a user
becomes mechanical and routinized in her interactions with
an interface, there is less likelihood of the user “exploring”
the interface to ensure her choice of command and
parameters is the best. Side Views can facilitate the
accidental discovery of viable alternatives to a planned
course of action when they pop-up through normal
interactions, or through the simultaneous use of multiple,
persistent Side Views.

In sum, Side Views provide mechanisms that open up the
interface, making it less like a “black box,” while providing
better support for expert practices such as experimentation
and evaluation.

IMPLEMENTING SIDE VIEWS
We have implemented Side Views in two applications, a rich
text editor and an image manipulation program. Both were
written in Java, with the GNU Image Manipulation Program
(the GIMP) [12] used as the image manipulation engine for
the latter application1. Using the GIMP grants us a
production-quality, fully-featured image manipulation
engine that enables us to test out Side Views in authentic
situations.

1. To use the GIMP as the image manipulation engine, we wrote a
general-purpose plug-in for the GIMP that enables Java code to
issue commands to the GIMP, and read and write pixel data.
This extension will be available for download from:
http://www.cc.gatech.edu/fce/ecl

Volume 4, Issue 2 75

In this section, we describe the Side Views’ architecture,
their interaction semantics, and the lessons learned from
building the two applications.

Architecture
Side Views’ architectural design is intended to be flexible
and extensible. It is a modular, pluggable design that makes
use of design patterns [11] to factor out behavior and
functionality that may differ across applications and user
needs. While our first implementation is within a GUI, the
design itself is not explicitly tied to a GUI, and could be
used within other interfaces, such as one whose primary
mode of input is speech.

The design is driven by the observation that on-demand help
is triggered by a specific event, but that this event and the
form of help may vary (see Figure 5). For example, a
traditional tool-tip is shown after the mouse hovers over an
interface object for a short period of time. However, it is
reasonable to assume that the trigger event could arise from
keystrokes, and that the help given could take another form,
such as synthetic speech, rather than visual cues alone.
Thus, the design of Side Views breaks the architecture into
components that monitor an interface for events, and factory
classes to generate and activate application-specific Side
Views when needed. Figure 6 shows an overview of this
design.

Given this overview of the basic architectural design, we
turn now to the specific interaction semantics of the Side
Views we created, followed by implementation issues.

Interaction Semantics
Invocation
The invocation of Side Views within our two sample
applications is identical to that of normal tool-tips: hovering
over a user interface object (such as a menu command)
causes a Side View to appear after a delay. Existing tool-tips
typically appear after a 750ms delay. However, in our
informal tests users requested a shorter delay because they
wanted faster access to Side Views when sampling the
interface. Thus, our current implementation uses a much
shorter 400ms delay. Our hypothesis is that the additional
utility of Side Views for experts motivates the request for a
shorter delay.

Instantaneous Display of New Side Views after Initial
Display
As with normal tool-tips, if a transient Side View is visible,
other Side Views will instantly appear if the cursor moves to
a new object. This instantaneous appearance of new Side
Views is important as it facilitates rapid sampling of options
within the interface: After a Side View has been made
visible, users can simply sweep the interface with their
cursor, pausing over items of interest to discern their effect,
rather than having to wait the default delay for each
interface object.

Making a Side View Persistent
To make a Side View persistent, users click in the title bar of
a Side View. This behavior changes the Side View into a
“regular” window that does not automatically disappear.

Figure 5: A general and specific flow-diagram for the
instantiation of a tool-tip. Tool-tips monitor a trigger event
(typically a cursor lingering over an object such as a
menu item), then display on-demand help, such as a text-
based tool-tip.

Figure 6: Side Views’ basic architecture. One or more
monitor objects “listen” for trigger events. When one is
detected, two factory classes, one for Side Views,
another for a component that activates and “renders” the
Side View, are used to instantiate and display a Side
View. In an MVC architecture, the Side View is the model;
the Component, the view and controller. Applications can
create custom monitors, Side Views, and Side View
Components.

76 Volume 4, Issue 2

Persistent Side Views dynamically update their previews to
reflect the current state of the active document.

Extended and Suspended Dismiss Delays
Normal tool-tips automatically hide themselves after a
certain amount of time (~7 seconds), called a dismiss delay.
However, Side Views offer a much more information-rich
preview, and thus can require more time to view. Thus, we
extended Side Views’ dismiss delay to 10 seconds, but also
added the ability for the delay to be temporarily halted.
When a user’s cursor enters a transient Side View, the
dismiss timer is stopped until the cursor leaves the Side
View.

Supporting Interaction
Supporting interaction in a transient Side View requires a
modification to typical tool-tip implementations, because
normal tool-tips hide themselves whenever the user moves
the cursor out of the component that generated the tool-tip.
For transient Side Views to support interaction, we
introduce a “grace period” whereby the Side View remains
visible for a short period of time after the cursor leaves the
triggering object. Currently, we use a 750ms delay for this
value: after the cursor leaves the object that initiated the
Side View, the Side View will remain visible for an
additional 750ms to give the user time to enter a transient
Side View. If the cursor enters another interface object (e.g.,
another menu item), then the original Side View is
immediately hidden and a Side View for the second object is
shown.

After the cursor enters the transient Side View, an identical
750ms delay is used before dismissing a Side View when
the user’s cursor leaves the Side View. This delay takes care
of the case in which the user accidentally enters and exits a
transient Side View when she actually intends to interact
with it.

Implementation Issues
Preview Content
Determining what information to preview can be
challenging for some commands. For commands that
produce a visual change in the interface, one challenge is
choosing how to render previews for changes that are too
large for a Side View window. For example, if a user selects
all the text in a multi-page document and wishes to preview
a style change (such as a different font size), there is a
question of how the Side View should render this rather
large preview.

For commands for which there are no visual changes in the
interface (such as the “print” icon in a toolbar, which
automatically prints the current document using the last
settings), the choice of what to preview is also unclear.

There are a number of approaches one could take to address
these concerns. For example, for changes to large selections
in a text document, the Side View could show the most
recently edited text, the beginning or end of the current text
selection, a scaled-down version, and so on. However,
through the design, development, and use of Side Views, it

appears that no single heuristic can reliably predict the
content of most interest to the user at any point in time --
there are simply too many special cases to consider.
Therefore, in our implementations, we chose to apply a
consistent, predictable algorithm to the initial display of
each Side View, but allow the user to modify the preview.
For Side Views in the text editor, we align the beginning of
the text selection in the top-left corner of the Side View,
unless the content is at the right margin, in which case we
right-align the preview (as in Figure 1). In the image
manipulation program, transient Side Views always appear
at a fixed thumbnail-size that displays a “before” and “after”
preview. These previews can later be resized to show larger
previews, and users can choose to view the parameter
spectrums as well. The initial preview uses the command’s
last settings.

For commands that do not produce a visual change, our rule
of thumb is to present a summary of the effect of the
command. For example, the Side View for the “print” icon
could show a print preview, but this is largely unnecessary
since most applications are “WYSIWYG.” Instead, the Side
View could display the printer settings that will be applied:
the printer that will be used, the number of copies, the
quality, etc.

Parameter Spectrums
As described in the design section, parameter spectrums
originally display a sampling of previews across the full
range of possible values for each parameter. Users can vary
the range shown in two ways. First, they can directly vary
the boundaries of the range via a slider that has three
handles. The center handle acts as a “normal” handle in a
slider, selecting the current value. The outer handles serve to
vary the boundaries of the range of values shown (see
Figure 7).

Second, users can click on a preview of interest. When a
user clicks a preview, the values of the previews to the left
and right of the one chosen become the new boundaries for
the range of values shown (again, refer to Figure 7.)

Previewing Direct Input
Many operations require direct input, such as text entry or
moues input, and some settings affect how that input is
interpreted. For example, the size, color, and opacity of a
paintbrush influence how a user’s mouse strokes will be
“painted” on a canvas.

Side Views for commands that require direct input present a
unique challenge, in that the data to be previewed has not
yet been entered. Yet it is desirable to be able to preview the
settings for the tool before actually using the tool.

In these circumstances, Side Views mimic user input in their
initial previews, then support user interaction to explicitly
input data to preview. For example, the Side View for a
paintbrush initially shows an overlapping grid of strokes
that enables the user to see the effects of both single and
overlapping paint strokes on their image. If the grid does not
provide the information needed, the user can move the

Volume 4, Issue 2 77

cursor over the original image. This action clears the default
grid in the Side View and replaces it with the user’s current
mouse strokes (see Figure 8). These strokes persist after the
cursor has left the image, allowing the user to interactively

vary parameters and view the effect in the sample paint
stroke drawn. This capability effectively enables users to
retroactively vary the parameters for previews of commands
with direct input.

Computationally Expensive Commands
Not all commands can be instantly previewed. Generating a
preview might be computationally costly, by virtue of the
operations performed, the amount of data that needs to be
copied, etc.

In our implementations, we have addressed this problem in
several ways. First, we create threads that perform
background rendering. These threads enable the interface to
remain responsive, while providing updated previews as
they become available. Second, in the image manipulation
application, we first scale an image down to its thumbnail
size, then apply the required filter. This procedure quickly
produces accurate previews for most operations (such as
those that modify an image’s colors, its rotation, etc.), but
not all -- some filters are not commutative with respect to
scaling transformations. That is, a filter will produce
different results if the image is first scaled then transformed,
rather than vice versa. Thus, another background rendering
thread is required to apply these filters to a full-scale version
of the image before scaling. Because we have been working
primarily with operations that are commutative with respect
to scaling transformations, we have only implemented the
first tier of rendering threads at this time. We plan to add the
second set of rendering threads for those commands that
require them; an open research issue is how to decorate
these previews so that users understand that a more accurate
preview is on its way.

RELATED WORK
Many applications extend tool-tips’ basic functionality
beyond static, text-based help. For example, a number of
Corel products [10] (e.g., WordPerfect and CorelDraw)
offer stationery tool-tips for font selection that dynamically
preview font attributes using the current document’s text.
Programming tools are also increasingly equipped with on-
demand help features, such as tool-tips that show the current
value of a variable within a debugger, or source code editors
that can display a list of applicable methods for a given
object (see VisualAge for Java [13] for examples of both
features). However, we know of no existing form of on-
demand help that provides the breadth of features offered by
Side Views, such as the capability to view multiple,
dynamically-generated previews.

Work in subjunctive interfaces [16,17] has developed
mechanisms that allow parallel document states to coexist
simultaneously. The primary method used to represent these
multiple realities is a layering of the (partially transparent)
states on top of each other in the document window. Side
Views also enables multiple potential states to be viewed
simultaneously, but relies on windows separate from the
main document window to show the previews. This design
choice helps avoid cluttering the main document window,
and is also essential in image manipulation tasks, for which
the layering of the multiple states would not be feasible.

Figure 7: Sequence of a user narrowing the range of
values previewed in a parameter spectrum. In the top
figure, the user clicks on the preview in the center,
signaling his interest in that value. The interface responds
by pushing neighbors on the left and right of the chosen
preview to the ends of the spectrum (the black arrows). At
the same time, the slider updates the positions of the
handles for the lower and upper bounds, to indicate the
new range of values previewed (the gray arrows)

Figure 8: Previews for commands requiring direct input
initially mimic user input, but also allow explicit user input.
The top illustration shows the default grid of paint strokes
for the paintbrush Side View. The lower Side View shows
the grid cleared away and replaced by a user’s mouse
strokes over the original image.

78 Volume 4, Issue 2

Side Views address similar problem areas as See-Through
Tools [7] (i.e., Toolglasses and Magic Lenses [7,8,21]). Side
Views both complement and extend this previous work.
See-Through Tools employ the metaphor of a physical lens
that transforms the underlying data representation via a
filter. Users can “click-through” the tool to apply the
command previewed. Like Side Views, these tools
unambiguously present available options to the user, allow
alternative visualizations of the data, and let the user explore
options without actually modifying the data. Side Views
complements See-Through Tools by introducing a
mechanism through which these types of tools can be easily
instantiated within current user interfaces, using existing
interface metaphors.

Side Views differ from See-Through Tools in that Side
Views do not use a spatial relationship to define the source
of the data previewed, but rather are tied to the currently
active data. This design decision enables mechanisms such
as parameter spectrums, and also allows for more flexible
layout of the tools. For example, a user can place Side
Views in available, peripheral portions of their display (e.g.,
on a second monitor) instead of in their primary workspace.
This feature is essential for certain tasks such as graphic
design or image manipulation in which the user must be able
to constantly view the document by itself for evaluation
purposes. The spatial decoupling of the tool from the data
also enables Side Views to provide multiple, simultaneous
previews of the same data using different commands. Users
can thus perform side-by-side comparisons of alternative
options.

Fluid links and fluid documents [9, 22] offer techniques for
providing additional information on-demand, for example
when a user hovers the cursor over a link. Fluid documents
display additional information in the context of the
document itself, rather than in a separate pop-up window.
Side Views share some goals with Fluid documents, though
Side Views focus on the ability to generate multiple,
simultaneous previews of commands.

Chateau, a suggestive interface for 3D drawing [14], uses
current selections in a 3D model to create an array of
thumbnail previews showing potential future states based on
those selections. Like Side Views, Chateau provides a user
with an array of previews to help guide her search. Side
Views differ in that they are user-initiated, giving the user
more control over which previews to show, and when they
should be shown.

Previous work has attempted to make command icons (e.g.,
in toolbars or palettes) more readily understood by
animating their functionality when the cursor enters the icon
[3]. Like Side Views, this technique aids novices, but its use
of canned animations limits its utility once an interface has
been learned.

Our implementation of parameter spectrums contains some
interaction semantics reminiscent of those found in the
Alphaslider [2]. For example, both show ranges of values,

and both can narrow the focus on the range of values shown.
However, Side Views’ parameter spectrums provide explicit
handles to allow the user to manually vary the range of
values previewed.

Adobe Photoshop [1] includes a “Variations” command that
generates a ring of previews representing different color
balance operations. Clicking on a preview applies that
operation within the dialog box, and all previews update to
reflect the new setting. This tool echoes Side Views’
parameter spectrums, but parameter spectrums improve
upon Variations in several ways. First, parameter spectrums
show ranges of values per parameter, granting the user a
better sense of the range of possibilities for each parameter.
Second, navigation within parameter spectrums is much
more powerful since users can directly access and
manipulate values and the ranges previewed.

When Side Views are chained together, the user can view
how changes in parameter settings in one command affect
subsequent Side Views. This functionality echoes that of
Editable Graphical Histories [15]. Editable Graphical
Histories enable a user to view and modify past operations,
and see the results trickle down the chain of operations to
the present state. Combining these techniques would be
beneficial, as it would create a system in which the user can
access and modify both past and future points on an
“interaction timeline.”

Design Galleries [18] is a system that automatically samples
a function’s parameter space to identify perceptually distinct
output within that space. While parameter spectrums show
interpolations across a function’s parameters, Design
Galleries attempt to inform a user’s search by first finding
and displaying visually distinct elements. Because Design
Galleries does not specifically address interaction and the
manipulation of parameters once a likely candidate has been
identified by the user, the two tools may nicely complement
one another.

SUMMARY AND FUTURE WORK
We have presented the design and implementation of Side
Views, an interface mechanism to support expert users in
open-ended tasks. Side Views take advantage of
increasingly powerful computers to generate multiple views
into potential future states, a task that is otherwise tedious
and time-consuming for users, yet of great benefit.

Our next steps are to perform user testing, and to integrate
Side Views into other applications. As a quick test of the
latter, we integrated the University of Maryland’s
PhotoMesa [4] into our image manipulation application.
The combined software enables users to browse images
using PhotoMesa, while simultaneously seeing the currently
selected image through any visible Side View filters: When
the cursor hovers over an image in PhotoMesa, PhotoMesa’s
default behavior automatically shows a tool-tip consisting of
a larger thumbnail of that image; in our integration, all Side
Views update their previews to use that larger thumbnail’s
image as their source. This integration has proven extremely

Volume 4, Issue 2 79

useful for browsing images that require some manipulation
for proper viewing. For example, if there are images that
need to be rotated to be properly viewed, a Side View for the
rotation command can be instantiated and referred to while
browsing the images in PhotoMesa. This browsing process
is fluid and fast, and does not require users to manually open
images nor apply a command to see the corrected images.

What is especially promising about combining these
mechanisms (i.e., ZUI’s [5,6] and Side Views) is the
potential for creating an environment in which the user can
more easily work with multiple documents and multiple
potential future states. Just as importantly, this combination
of ZUI’s and Side Views suggests a method to manage the
visualization and navigation of a large number previews
simultaneously, something that the current implementation
of Side Views does not cleanly handle.

Finally, there remain many interesting research challenges
for the integration of Side Views in other application
domains, such as those concerned with multimedia. For
example, we are interested in understanding how the
concepts might be applied to audio and video editing.

REFERENCES

1. Adobe Systems Incorporated. http://www.adobe.com

2. Ahlberg, C., & Schneiderman, B. The Alphaslider: A
Compact and Rapid Selector. In Proceedings of CHI ‘94,
pp. 365-371.

3. Baecker, R., Small, I., Mander, R. Bringing Icons to
Life. In Proceedings of CHI '91, pp. 1-6.

4. Bederson, B. PhotoMesa: A Zoomable Image Browser
using Quantum Treemaps and Bubblemaps. In
Proceedings of the 14th Annual ACM Symposium on
User Interface Software and Technology (UIST 2001),
pp. 71-80.

5. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. W. (1996). Pad++: A Zoomable
Graphical Sketchpad for Exploring Alternate Interface
Physics. Journal of Visual Languages and Computing, 7,
pp. 3-31.

6. Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz: An
Extensible Zoomable User Interface Graphics Toolkit in
Java. In Proceedings of User Interface and Software
Technology (UIST 2000), pp. 171-180.

7. Bier, E., Stone, M., Fishkin, K., Buxton, W., & Baudel,
T. A Taxonomy of See-Through Tools. In Proceedings of
CHI ‘94, pp. 358-364.

8. Bier, E., Stone, M., Pier, K., Buxton, W., & DeRose, T.
Toolglass and Magic Lenses: The See-Through
Interface. In Proceedings of the 20th Annual Conference
on Computer Graphics, August 1993, pp. 73-80.

9. Chang, B., Mackinlay, J., Zellweger, P., & Igarashi, T. A
Negotiation Architecture for Fluid Documents. In
Proceedings of the 11th Annual ACM symposium on
User Interface Software and Technology, 1998, pp. 123-
132.

10.Corel Corporation. http://www.corel.com

11. Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
Design Patterns. Addison-Wesley Longman, Inc. 1995.

12.The GNU Image Manipulation Program (GIMP).
http://www.gimp.org

13. IBM VisualAge for Java.
http://www.ibm.com/software/ad/vajava/

14. Igarashi, T., and Hughes, J. F. A Suggestive Interface for
3D Drawing. In Proceedings of UIST '01, pp. 173-181.

15.Kurlander, D., and Feiner, S. A Visual Language for
Browsing, Undoing, and Redoing Graphical Interface
Commands. In Visual Languages and Visual
Programming. S.K. Chang (ed.). Plenum Press, New
York, NY., 1990, pp. 257-275.

16.Lunzer, A. Choice and Comparison Where the User
Wants Them: Subjunctive Interfaces for Computer-
Supported Exploration. In Proceedings of IFIP TC. 13
International Conference on Human-Computer
Interaction (INTERACT ‘99). Edinburg, Scotland, Aug
1999, pp. 474-482.

17.Lunzer, A. Towards the Subjunctive Interface: General
Support for Parameter Exploration by Overlaying
Alternative Application States. In Late Breaking Hot
Topics Proceedings of IEEE Visualization ‘98. Research
Triangle Park, North Carolina, Oct 1998, pp. 45-48.

18.Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H.,
Ruml, W., Ryall, K., Seims, J., & Shieber, S. Design
Galleries. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques,
August 1997, pp. 389-400.

19.Newman, M., & Landay, J. Sitemaps, Storyboards, and
Specifications: A Sketch of Website Design Practice. In
Proceedings of Designing Interactive Systems (DIS
2000). NY, NY, pp. 263-274

20.Schön, D. A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, NY. 1983.

21.Stone, M., Fishkin, K., & Bier, E. The Movable Filter as
a User Interface Tool. In Proceedings of CHI ‘94, pp.
306-312.

22.Zellweger, P., Chang, B., & Mackinlay, J. Fluid Links for
Informed and Incremental Link Transitions. In
Proceedings of the Ninth Annual Conference on
Hypertext and Hypermedia. Pittsburgh, PA, USA. 1998,
pp. 50-57.

80 Volume 4, Issue 2

