
ABSTRACT
The digital personal calendar has long been established as
an effective tool for supporting workgroup coordination. For
the new class of ubiquitous computing applications,
however, the calendar can also be seen as a sensor,
providing both location and availability information to these
applications. In most cases, however, the calendar represents
a sequence of events that people could (or should) attend,
not their actual daily activities. To assist in the accurate
determination of user whereabouts and availability, we
present Ambush, a calendar system extension that uses a
Bayesian model to predict the likelihood of one’s attendance
at the events listed on his or her schedule. We also present
several techniques for the visual display of these likelihoods
in a manner intended to be quickly interpreted by users
examining the calendar.
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INTRODUCTION
The digital calendar is a common artifact found on the
PDA’s, mobile phones, and/or PC’s of most office workers.
In the workplace, a number of benefits are attained through
the ability to browse the calendars of others. To this end, a
great many workplaces have seen the introduction and
adoption of groupware calendar systems (GCS’s). These
systems make it possible for calendar information to be
made publicly available in some form to members of the
same workgroup or institution. Such systems commonly
facilitate such activities as meeting scheduling, temporal
orientation, and reminding. Recently, a study by Palen [20],
while confirming the popularity of the aforementioned
calendar tasks, identified a number of additional uses for
GCS’s. These uses included location detection, record
tracking, and peer judgment, among many others. Office
workers will often use public calendar information to locate
a colleague. In addition, users may track their own
schedules to identify trends in their activities. People will
often browse the calendars of coworkers to assess the
quality of time corresponding to free/busy blocks in the

schedule. They may assess a coworker’s workload, attempt
to determine activities undertaken between scheduled
events, or estimate the priorities of those events to the
coworker. Therefore, an accurate representation of the
events to be attended improves a coworker’s ability to infer
this information.
Informal Communication
The location information available through public calendars
is invaluable to coworkers who are attempting to ‘drop in’1

on a colleague, whether through office visits or encounters
at some other event. In our own academic department, as
well as in other research settings [6] [7], a great deal of work
i s  accompl i s hed  t h rough  th i s  t ype  o f  i n forma l
communication [14]. While meetings and courses make it
difficult to catch up with students and faculty, deviations
from the schedule outlined on a public calendar exacerbate
the problem. To this end, we are pursuing the development
of applications that provide a more accurate picture of
coworker location and availability. We make use of the
calendar, in addition to other contextual information, as a
means of facilitating informal office visits.
In the research community, public calendar information is
being incorporated into a number of wearable and
ubiquitous computing applications that treat the calendar as
an additional piece of context. Yan’s context-aware office
assistant [23] uses a person’s calendar to inform a
personified agent of available meeting times for visitors at
that person’s office door. Applications based on the CLUES
message filter [17] use calendar information and other
sources in the work environment to determine the relevance
of incoming messages. The Bayesian user models developed
for the Attentional Systems project at Microsoft Research
[10] use calendar information as a means to determine the
user’s state of attention.
Calendars as Sensors
In all of these cases, we can view the personal calendar not
only as an information storage artifact, but a sensor that can
inform software applications as to the location, availability,
and workload of a person. Like many sensors, the calendar
is a portable object that can serve multiple components in
any number of environments. In addition, the information
contained within the calendar is dynamic, requiring periodic
updates by programs using it.

1.   In our work environment, we good-naturedly refer to this prac-
tice as an “ambush”. For example, planning to talk to someone at a 
mutually attended seminar. It is seen as an effective and positive 
practice.
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Perhaps the most important similarity between calendars
and sensors, however, is the potential for inaccuracies in the
information presented to applications. Systems that attempt
to use calendar information to locate individuals or
determine their availability ignore the actual attendance
habits of calendar owners. Two events may have a time
conflict, with an important isolated event overriding a
routine recurring event. The user may lose interest in a
recurring event and neglect to remove it from the calendar.
In each case, the calendar will provide incorrect input.
A Probabilistic Calendar
Though the task of predicting which events on a user’s
calendar will be attended seems infeasible, we can make use
of attendance history and attributes of calendar events to
present a likelihood of attendance to applications. Through
informal interviews and a cluster analysis of data elicited
from those interviews, we have constructed a Bayesian
model of user attendance preferences. Using this model, we
have developed Ambush, a system that can predict the
probability of a user’s attendance at a given future event on
his/her calendar.
Figure 1 provides an overview of  the system. An
“attendance diary” kept by the calendar’s owner lets the
system use a form of reinforcement learning to improve its
predictions over time. Autonomous components scan for
new diary entries and use them as evidence to teach the
model. Application programmers can then use the model as
a sensor to make more informed assumptions about a
person’s schedule.
We have already noted that our primary motivation is the
support of informal visits in the workplace. Given that
people have so many uses for public calendars, we have
focused our efforts on the design of a simple calendar
display program. To this end, we have created several
simple visualizations of the uncertainty expressed in the
Bayesian model in hopes of effectively conveying the
likelihood of a person’s attendance at a given event.
At times, the model must make uninformed predictions due
to a short learning period or a novel situation. In these cases,
the user should be able to access more information about the
model for the purpose of diagnosing or verifying its
predictions. Therefore, we also attempt to visualize the

model’s internal influences for users who may be skeptical
of its output. The design is loosely based on Kohonen’s
feature map [12] and visually captures the relationships and
degrees of influence of variables within the model. We
believe that a major issue for future HCI research in
wearable and ubiquitous computing will be the presentation
of this type of explanatory information for intelligent
applications.
The Ambush system is currently being used at the Georgia
Tech College of Computing to provide awareness of faculty
whereabouts. This awareness supports the initiation of
informal meetings by students, administrators, or other
faculty.
A word on privacy, or
“Why is he skipping my meeting?”
We understand that the information provided by our system
has the potential to be used in a manner that could make
some office workers uncomfortable. After all, hurt feelings
or misunderstandings might arise when an event’s organizer
sees that the probability of a particular coworker ’s
attendance is low. We note that our system, since it learns
over time, reflects trends in a person’s attendance habits that
are likely to be noticed by organizers or other attendees.
However, the motivation for this system originated from the
calendar owner’s perspective. The owner needs to connect
with numerous people seeking her input on a daily basis.
Any attempt at scheduling all of these brief discussions
would be infeasible. Therefore, any support for assisting
these informal meetings is welcome.
The prototypes presented later in this paper display
information explicitly, and, as with all personal information,
must be used only with user consent. Applications that use
the system as a source of contextual information must
ensure that the user has the option of not making their
predicted attendance available, or provide a more qualitative
representation.
The next section presents some related work in the areas of
informal scheduling, group awareness systems, and learning
systems for calendar applications. We then discuss our
implementation, including the user model, system
architecture, and visualization prototypes of the system’s

Figure 1: Ambush system diagram
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output for use in calendar browsing. Lastly, we outline
future work for the project and conclude.
RELATED WORK
Perhaps the most closely related work is Yan and Selker’s
Context-Aware Office Assistant [23], a system to manage
appointment scheduling at the office threshold. This system
used a small interactive application inside the office to
obtain the owner’s willingness to meet with visitors. Our
probabilistic calendar provides a better picture of the
owner’s availability in the cases where the user does not
have feedback from the office owner. These cases might
include the owner’s absence from the office or passive
browsing of his/her calendar from a remote location. Such a
calendar would also provide an estimation of the owner’s
availability to the agent at the door, obviating the need to
interrupt those inside the office.
Beard et al [1] describe a visual calendar intended to
facilitate the scheduling of group meetings. Their
implementation assigns each calendar entry a transparency
level corresponding to the user-defined priority of the event,
where lower-priority events are more transparent and the
highest-priority events are opaque. Meeting scheduling then
becomes a matter of overlaying user schedules and finding
the least opaque area that could accommodate the meeting.
We think that our calendar system could automate the
assignment of priority levels without requiring the user to
prioritize each entry by hand. In addition, changing notions
of a recurring event’s priority are reflected in the attendance
habits of the calendar’s owner, and would subsequently be
represented in our model.
A number of systems have been developed to incorporate
calendar use information to teach an agent the scheduling
habits of its users [18] [13]. It should be noted that while
most of the aforementioned systems incorporate some form
of learning to facilitate scheduling activities, they do not
consider or attempt to predict the attendance of the user at

the events scheduled. Therefore, these systems still treat
calendars as the actual schedules their users will follow. In
addition, our probabilistic calendar is intended to support a
broad range of applications, of which meeting scheduling is
but one. 
Of critical importance to our work is the issue of trust in
agent-based systems, also addressed by Kozeriok and Maes
[13]. By letting an agent learn, either through reinforcement
or observation, its inferences become more accurate over
time. The user comes to trust its decisions and gradually
offload more mundane duties to the agent. The issue of trust
is further discussed in a position statement by Kurlander [2],
which states that an agent-based system should present a
clear model of the input to the user in order to let the user
understand the basis for its decisions. Since we have already
stated that the task of precise attendance determination is
infeasible, we must present a “paper trail” of the agent’s
reasoning to the user. This explanatory information forms
the basis for a novel visualization prototype discussed later
in this paper. An important body of work on explanatory
techniques for probabilistic inference exists in both verbal
[4] [22] and graphical [16] forms.
Research in the field of groupware calendar systems is quite
substantial. We have already touched on the excellent study
of issues for GCS’s by Palen [20]. Other studies that have
addressed the social uses of GCS’s include work by Mosier
and Tammaro [19], and by Ehrlich [5]. These studies, along
with our own observations in the workplace, demonstrate a
clear purpose for a system that presents users with a more
accurate schedule for a coworker.
IMPLEMENTATION

Bayesian Models
To model the inherent uncertainties in the attendance of
users at their scheduled events, we developed a Bayesian
network to model attendance habits. Bayesian networks

Figure 2: A Bayesian model of event attendance
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provide a compact, descriptive means of encoding uncer-
tainty in systems where we have a fair amount of structure
and a store of prior knowledge about the system in the form
of either collected data or experts. They have been used
successfully in a number of interactive systems [3] [9] [11],
and are useful tools for context-aware applications that must
make higher-level inferences under uncertainty from sensed
data. As we shall see, the inherent structure of a Bayesian
model can be incorporated into an explanatory interface
component that illustrates the factors contributing to the
model’s predictions.
User model
Figure 2 illustrates the model used to determine the like-
lihood of a person’s attendance at a given event. We created
this model by hand using Norsys Corp.’s Netica belief
network software. While certainly not a comprehensive
model of all factors that one considers when making the
decision to attend, we feel that it captures the major
influences and generates reasonable predictions in practice.
The model specifies the decision to attend as a result of
influences from the priority of the event, the priority of a
conflicting event (if one exists), and the current availability
of the potential attendee.
To arrive at the network depicted in Figure 2, we conducted
informal interviews with both students and faculty within
our academic department.  This work resulted in a
substantial list of items considered by interviewees to have
some influence in their decisions to attend an event. With
this list in hand, we then worked to define the structure
uniting these factors toward a single decision. We decided
that the majority of factors listed contributed to an assess-
ment of the event’s priority and the person’s availability.
These were established as meta-criteria in our model,
exerting direct influence on the final decision to attend.
Other information garnered from interviews concerned the
existence of conflicting events. We therefore incorporated
an additional branch of the model to handle the existence of
such a conflicting event. To determine the variables that
would be depicted as nodes in the network, we identified
common decision factors that were mentioned by many of
the interviewees.
To use the model in practice, we identified those factors that
we would be capable of sensing, either now or in the near
future, for the purpose of teaching the network through
reinforcement. Sensing capabilities were limited by our
choice of calendar format, and by our department’s current
technology infrastructure. Although this step resulted in
some paring down of the original network, factors that were
determined to be the largest influences (e.g., the person’s
role in the event, his/her location, all-day events) were kept
intact. The remainder of this section provides a more
detailed description of the items comprising the network.
The priority of an event is influenced by a number of
factors, including the alarm status, recurrence status (the
event occurs daily, weekly, yearly, etc.), the type of event
(course, seminar, group or individual meeting, etc.), and the
user’s role in the event (organizer, mandatory attendee, etc.).
The presence of “all day”, or untimed, events influences the

priority of other events on the schedule, since such events
typically supersede routine recurring events.
The model specifies availability as the result of influences
from the user’s location, the event time, and the length of the
event. Many students and faculty in our department share
their time between three different buildings that are not
physically proximal to one another. While we do not yet
have the infrastructure in place to provide fine-grained
tracking of users across campus and beyond, we do have the
ability to determine the building a person is currently in.
This coarse location history, combined with prior
information elicited through interviews with the user, allow
us to obtain probabilities that serve as a reasonable estimate
for both location and availability.
The existence of a conflicting event presents an interesting
problem. In this case, the user can only be in one place at
that time, so a judgment by the system must be made on
which event is preferred. Therefore, the system considers
the priorities of the current event and the conflicting event,
as well as user availability, to determine an appropriate
likelihood of attendance for the event. Priorities for both
events are determined using the same criteria described
earlier. Note that a current limitation of the model is that
only one other conflicting event is considered. We plan to
extend the model to handle an arbitrary number of
conflicting events in the future.
Evaluation
To this point, we have trained the Ambush system on two
and a half months worth of calendar data for a single user, or
roughly 200 events. Since we had no existing store of data
prior to the initiation of the project, the learning time is
fairly short. Therefore, we have not yet performed any
statistical analysis on the results produced by the system.
However, the results of the system have been available to
members of our lab and department since the learning
period began. Qualitatively, we have noticed trends in
attendance habits as probabilities for recurring events have
increased or decreased over the course of several weeks.
Users are clearly able to observe the relative prospects of
attendance for a day’s worth of calendar events. The
learning algorithm used by our software incorporates a
measure of experience, so that probabilities are changed less
as more cases are presented to the network. As expected,
routine events appear to be stabilizing more rapidly than the
more diverse class of special, one-time events. Our future
work section discusses some ideas for refining the accuracy
of the network and shortening its learning time.
Visualizations
As stated earlier, our initial use for the calendar is to support
informal communication in the workplace by giving users
an improved perception of the location and availability of a
colleague. To this end, we have created several interface
prototypes for a graphical schedule viewable by any
colleague in the same department as the schedule’s owner.
The designs incorporate visualizations of the owner’s
likelihood of attendance at the events listed. These visua-
lizations are intended, at a glance, to convey both the
likelihood for a given event as well as the relative likeli-
hoods for an entire day of events.
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Prototype 1: Bar Graphs
Our first attempt at a graphical depiction of our calendar’s
output was to display the likelihood of attendance as a basic
bar graph. While simple in design, the prototype clearly
shows the relative probabilities of attendance for the day’s
scheduled events. Additionally, the design is easy to
implement in standard HTML, so a simple CGI script can
generate the view from the current state of the network and
make it available from any graphical web browser.
Prototype 2: Transparency
Figure 3 shows a prototype using a transparency technique
similar to that employed in Beard et al’s work. Whereas
their system associates transparency with a user-assigned
priority, our prototype maps transparency to likelihood of
attendance. The priority algorithm for their system, which
used local minima in the opacity of attendee calendars to
identify common periods of availability, could also be
adapted to this prototype. A person’s most probable choice
between two conflicting events can be determined through
simple visual inspection. Events with a higher probability of
being attended are made more opaque, while an event with a
low probability of attendance is still kept legible using the
cutoff of 90% transparency given by Harrison et al [8].
Transparency for this prototype has been discretized to eight
levels to help users distinguish between relatively close
probabilities. 
Prototype 3: Feature Map Variation
As with any learning system, the introduction of novel
situations will often cause the system to generate inaccurate
predictions. In both of the prototypes just presented, the
probability of attendance is represented as a single scalar
value that may or may not be reasonable to the viewer. Since
Bayesian networks provide a more human-readable repre-
sentation of the system being modeled than “black box”
techniques such as neural networks, their underlying
structure can be used to provide a better understanding of
the process that led to the system’s prediction. In addition,
the probabilistic relationships between nodes of the network
can be used to identify those variables whose evidence will
have the most profound effect on another variable’s
likelihood. Our next prototype attempts to use this
information to visualize the most important influences on
the network’s prediction, allowing the viewer an abstracted
view inside the “black box” of the system.
To provide this view, we have designed a variation on
Kohonen’s feature map [12]. The feature map is the result of
an algorithm that maps a set of N-dimensional input objects
to a static two-dimensional grid. The two-dimensional
nature of the map allows not only a representation of the
inputs themselves, but the relationships between inputs as
well. The main properties are:
• Inputs that occur more frequently occupy more space at 

the expense of those occurring less frequently.
• Proximity of inputs on the grid represents a closer rela-

tionship between those inputs. Input “closeness” is deter-
mined using methods specific to the type of input being 
visualized.

The feature map has been used in the visualization of query
matches to a document database [15]. Specifically, it was

used for query matches based on statistics, probability
theory, etc., where some measure of the “closeness” of the
items returned could be applied. The work even suggested
the feature map as a natural counterpart to any such set of
low-precision, “fuzzy” input where the user must be able to
easily browse their relationships and relevance.
One of the feature map’s advantages is that it can represent
dynamic structural relationships among a set of inputs. In
our case, however, we have a Bayesian model whose
structure currently does not change between situations.
Therefore, nodes occupied by the inputs to our map do not
significantly change their relative locations. As we shall see,
this presents certain advantages to the user in the form of
consistency in the interface. For more sophisticated
networks whose structure changes as new variables and
relationships are learned, the feature map algorithm could
prove especially useful.
Figure 4 (a and b) shows our feature map variant for two
events using the same calendar day of the previous example
as input. The entry is confined to a rectangular shape for
integration into a standard calendar program. The rightmost
sections of the entries indicate the event title and the
attendance likelihood in a vertical bar graph identical to our
first prototype.
The boxes to the left of the bar graph comprise the feature
map. Subdivisions within the map represent variables in the
Bayesian model of Figure 2, and are organized to indicate
the most important influences in the network and their
relationships. Therefore, only the most influential variables
are represented in the map. Horizontal adjacencies between

Figure 3: A prototype that uses transparency
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boxes indicate relationships between variables, and are
color-coded for clarity. Although true feature maps also
make use of the vertical dimension to depict relationships,
the structure of our network is sufficiently simple that we do
not use this dimension. Larger boxes indicate greater
influence on related variables. The Netica software cal-
culates this degree of influence by performing a sensitivity
analysis using an entropy reduction metric. Variables that
exert the most direct influence on the final prediction are
further to the right.
As an example, suppose we wish to determine why the
likelihood of attendance for the event named “FCE” is lower
than that of the event named “ecl”. The largest direct
influence on the system’s prediction seems to be the priority
of any conflicting events, indicated by the top row of boxes
in the map. Since there are no conflicting events for either
entry, we look to the next highest influence, which is the
priority of the event itself, occupying the middle section of
the map. We see that “ecl” is most likely a high priority,
while “FCE” is a medium priority. To find out more, we
look at the variables influencing the priority, which are the
identically colored boxes to its left. We see that the
calendar’s owner is the organizer of the “ecl” event, but only
an attendee of the “FCE” event. Therefore, we conclude that
the owner’s role in the event is the most likely reason for the
disparity between the two entries.
This visualization is also useful for diagnostic purposes. If a
person browsing this information is skeptical of the results
returned, an examination of the map can reveal incongruities
between the system and user models of the situation. For
example, an earlier version of the prototype depicted an
event with the word “seminar” in its title. Upon examining
the feature map, the calendar’s owner observed that
although that particular event was technically a seminar, it
should be treated as a course. We then modified our text-
parsing component (discussed later) to account for this
event.
Evaluation
Although no formal evaluations have been conducted on
these techniques, informal assessments by students and
faculty within the department raised a number of issues,
prompting several refinements to the prototypes introduced

in this work. Users were able to perform comparisons of
entries visualized using our modified feature map,
identifying the key differences that produced the final
prediction. Larger subdivisions in the map were correctly
identified as heavier influences toward predictions, and the
color-coded layout cued them in to relationships in the
network. However, the exact relationship between the
influences represented in the map and the final scalar output
was not clear. Users seemed to want the colors used in the
map to be incorporated into the bar graph on the right in
some additive fashion. Unfortunately, interrelated variables
in the network and negative influences conspire to make this
type of association difficult. Nevertheless, we feel that this
technique, and its future refinements, represents an
important area of research, as more intelligent components
are included in ubiquitous computing systems.
For our semi-transparent prototype, the use of a continuous
mapping from attendance probability to opacity made it
difficult to distinguish significant differences between
entries. We therefore discretized the mapping to emphasize
those differences.
System Components
The system is currently implemented in three components.
The first is a web-based “attendance diary” program that
presents the calendar’s owner with a checklist of the day’s
scheduled events. The owner checks which events were
attended and which were not, and submits the list. The diary
is implemented as a CGI script, and calendar data is
obtained by parsing the owner’s Palm datebook data file.
There were several reasons behind our choice of the Palm
datebook. First, unlike many organizations, our academic
department does not have a standard groupware calendar
system such as Microsoft Outlook or Netscape Calendar
available to all students and faculty. As such, the most
commonly used calendar system turns out to be the Palm
datebook. Second, while the datebook provides a rather
impoverished set of event attributes, the learning evidence
generated from datebook data proved to be sufficient in
obtaining sensible predictions.
A second module, running in the background, checks for
new submissions from the attendance diary, converts them

Figure 4: Visualizations of the first two calendar entries used in Figures 2 and 3. Larger boxes indicate greater influence over horizontally
adjacent variables. The rightmost boxes, adjacent to the title and bar graph, indicate the most direct influence over the final prediction of
attendance. Note how the person’s roles in the event (“Organizer” in Figure 4a and “Attendee” in Figure 4b) seem to be the main reasons
for the difference in attendance likelihood between the two entries.

(a) (b)
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into learning evidence for the Bayesian network, and saves a
new network with updated probabilities that reflect the new
evidence. Network learning is performed through the Netica
API.
Many of the Palm datebook fields have straightforward
mappings to the variables in our Bayesian model. Several
variables, however, such as User Role and Location, do not
have equivalent fields in the Palm datebook. Therefore, we
perform some rudimentary text parsing of the event title in
an attempt to extract evidence for these variables. For
instance, if a particular course number is found, the location
is easily determined from the school course directory. The
calendar owner’s status as faculty or student establishes his
or her role in that course as either attendee or organizer.
Other proper names and keywords are also used to provide
similar mappings. Although the mappings currently exist as
a static list of keyword-variable pairs, a future refinement of
the system will be to learn new mappings either by explicit
user descriptions or by observing the user and forming a rule
base in a manner similar to the CAP system.
A third component, implemented as a C++ class, takes a
given calendar event, sets its attributes as evidence to the
Bayesian network, and performs probabilistic inference to
arrive at a likelihood of attendance for the event. Again, the
Netica API is used to perform network manipulation and
inference. Other nodes of the network can be examined as
well, and one can even determine the variables that are
exerting the most influence on a given variable. This class is
intended to be available to any application programmer who
wishes to incorporate probabilistic calendar data.
A browsable calendar for one of our faculty members is
currently deployed as a CGI-based web page accessible to
members of our department. Currently, it only uses the bar
graph visualization technique, as our other methods do not
yet lend themselves well to HTML description. Updates to
the calendar are performed via network synchronization of
the faculty member’s Pilot with the workstation currently
running the Bayesian network software.
CONCLUSIONS AND FUTURE WORK
We have presented Ambush, a probabilistic calendar that
provides informed predictions of attendance at future
events. We have created a Bayesian model of user
attendance habits to supply these predictions. We have
demonstrated the importance of calendar information in its
traditional role as a stand-alone means of supporting
individual and group work, and also in its more novel
capacity as a provider of contextual data to a growing
number of wearable and ubiquitous computing applications.
We feel that a probabilistic calendar is of great importance
to applications attempting to use such information to
determine user availability or location.
Toward our own specific research goal of using calendars
and other contextual information to support informal
communication in the workplace, we have presented several
techniques for visualizing the probabilistic output of our
calendar. These techniques included a simple mapping of
attendance likelihood to a bar graph or transparency level, as
well as a more sophisticated approach that attempts to let

users leverage the readability of Bayesian networks to form
a better conceptual model of the system.
A probabilistic calendar could serve as a useful sensor in a
wide range of applications, ranging from communications
systems that consider the availability of the user to
recommender systems that make use of the user’s current
working context. To enable fast integration of our system
into such applications, we are pursuing its inclusion in the
Context Toolkit [21], a framework for building context-
aware applications.
We recognize that the attendance diary is an additional
burden on the user. Efforts are underway at Georgia Tech to
provide location tracking to both faculty and students. This
information could be used in conjunction with the calendar
to automatically check attendance by correlating calendar
entries with the current location of the owner and possibly
any other attendees listed. We hope to deploy our system on
a larger scale to collect more attendance data, thereby
improving the model’s predictions. Given that the extra
work involved in having each user maintain a diary would
make large-scale deployment impractical, the elimination of
this component is a high priority.
Mitchell’s CAP system [18] exhibited poor performance
during the large schedule disruptions caused by the semester
boundaries in the academic year.  We expect some
performance degradation as well, since user availability will
change as classes are shifted to new dates and times. Since
the learned probabilities from the previous semester
associate availability with event dates and times, we can
consider mapping these probabilities to the dates and times
of new events on next semester’s schedule. This could at
least establish a baseline and possibly shorten the learning
time required to produce sound predictions about
attendance.
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