
Designing and Implementing Asynchronous
Collaborative Applications with Bayou

N Keith Edwards, Elizabeth D. Mylzatt., Karin Petersen,
Mike J. Spreitzet; Douglas B. Terry, Marvin M. Theimer

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

{ kedwards, mynatt, Petersen, spreitzer, terry, theimer} @parc.xerox.com

ABSTRACT .

Asynchronous collaboration is characterized by the degree
of independence collaborators have from one another. In
particular, collaborators working asynchronously typically
have little need for frequent and finegrained coordination
with one another, and typically do not need to be notified
immediately of changes made by others to any shared
artifacts they are working with. We present an infrastructure,
called Bayou, designed to support the construction of
asynchronous collaborative applications. Bayou provides a
replicated, weakly-consistent, data storage engine to
application writers. The system supports a number of
mechanisms for leveraging application semantics; using
these mechanisms, applications can implement complex
conflict detection and resolution policies, and choose the
level of consistency and stability they will see in their
databases. We present a number of applications we have
built or are building using the Bayou system, and examine
how these take advantage of the Bayou architecture.

KEYWORDS: computer-supported cooperative work,
asynchronous interaction, distributed systems, Bayou.

INTRODUCTION
Collaboration involves sharing: the sharing of data, artif%cts,
context, and ultimately ideas. The CSCW community has
often categorized collaborative systems based on the
temporal aspect of sharing: applications in which users share
some ‘Yhing” at the same time are called synchronous.
Applications in which the users share that thing at different
times are called asynchronous.

Synchronous applications, typified by such systems as
ShrEdit [lS][lS] and SASSE [I], are highly-interactive,
“real-time” systems in which a group of possibly distributed
users interact together to achieve some result. Much of the
recent research into collaboration, with the exception of
electronic mail [7] and occasionally group editing studies
[17] has focused on new tools and techniques to support
synchronous collaboration.

Permission to nx~lre digitnlhrd copies ofall orpnrt ofthis materinl for
pcrsonnl or classroom use is grated without fee provided thnt the copies
are not nude or distributed for profit or commercial advantage, the copy-
right nolice, the title ofthe publication and its date appear, and notice is

given lhnt copyright is by permission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

UIST 97 BmfJ A Ibertn, Cbnnrlo
Copyright 1997 ACM 0-89771~SSI-9/97/1O..S3.50

Asynchronous systems, however, present a number of
unique challenges to designers and builders of collaborative
systems, from both the human and the technological
perspectives. Asynchronous systems are appealing because
they allow their users to manipulate time and space to their
own advantage-users can work when and where they
please, without being constrained by the schedules or
locations of others. This style of work, and the settings
where asynchronous systems are deployed, have
implications for the design of infrastructure and applications.
Asynchronous systems must accommodate groups of largely
autonomous users, perhaps only loosely connected to each
other at any given time.

This paper explores design issues for collaborative systems
in general, and asynchronous systems in particular. We
examine the reasons that users opt for asynchronous
interaction, and the implications of those choices for
designers of collaborative infrastructnre and applications.
We @so present a system, called Bayou, designed to support
data sharing by groups of individuals working together.

Bayou is an infrastrncture for supporting distributed and
collaborative applications in which all user interaction
involves reading and writing a shared, replicated database.
Unlike many infrastructures for collaboration, Bayou is
capable of operating over a range of connectivity
parameters, from high-bandwidth and constant connectivity,
to low-bandwidth and only occasional or unreliable
connectivity, as in the case of mobile users. Bayou is a true
distributed system-meaning that there is no single
centralizd location at which data is stored-with weak
consistency among replicated data

Bayou provides mechanisms for application builders to
describe the semantic constraints of their applications to the
system. These mechanisms allow applications to supply their
own data-integrity constraints, conflict detection and
resolution procedures, and data propagation policies.

In the following section, we discuss some of the
characteristics of asynchronous work, and the properties of
asynchronous work that make it desirable for many forms of
collaboration. Next, we examine the impact of these
characteristics on infrastructure and application design-of
necessity, any system for supporting asynchronous work
must be informed by the properties of such work.

119

Then, we describe the Bayou infrastructure. We detail the
goals of the system, how it works, and the implications of..
Bayou for application builders. To demonstrate how Bayou.
supports the design of asynchronous systems, we describe a
set of applications built on top of Bayou. These applications
span a range of complexity and interactivity, and each
presents a set of lessons for infrastructure builders and
application writers. 1

CHARACTERIZING ASYNCHRONOUS COLLABORATlOi’i
Asynchronous collaboration is typically characterized as
“different place/different time” collaboration. This
characterization is often too simplistic, however. For many
asynchronous systems, the defining characteristic is not the
fact that the collaboration doesn’t happen at the same time,
rather that it needn’t necessarily happen at the same time.
This distinction is not simply a pedantic one-it has
implications for designers of applications and infrastructure.

In an asynchronous setting, the reason that collaboration can
happen at different times is because the users do not need:to
coordinate with one another interactively, and-do not need to
be notified in “real time” of each other!s changes to the
artifacts they are ,sharing. Certain collaborations may lend
themselves to this style of interaction because of the nature
of the task itself, the work practices of the participants, or the
state of the technology at hand.

Tasks that are suitable for this style of work often require
little interactive coordination and, sharing of work.
Collaborators typically can work independently for periods
of time, and there is little need for instantaneous propagation
of results.

Work practices that favor asynchrony are characterized by
people exploiting time and space to work at their
convenience and with limited disruption. Such practices may
come about because of setting (time zones that prevent
collaborators from working at the same time, for instance),
or personal desire (minimization of interruption by letting
telephone calls “roll over” to voice mail for example).

Technological constraints may also favor asynchrony.
Common examples of these include limited network
bandwidth that prevents finegrained or timely sharing of
information, and disconnected use (such as using a laptop on
an airplane) that separates collaborators.

Independence is perhaps the key trait of asynchronous work.
In asynchronous interaction, collaborators, while still
operating on some shared set of da@~context, information,
or artifacts, do so largely independently of one another.

In such work, the need for coordination-communication
about the collaboration-is lessened, or at least less frequent
than it is in synchronous work. For example, collaborative
paper writing--at least in the non-computer mediated case-
typically involves fairly infrequent coordination. Authors
work largely independently, “syncing up” only when
necessary to integrate results, or to reaffirm goals or plans
u71.

Further, asynchronous tasks that center around some shared
artifact do not typically require that all participants
immediately know about changes to that artifact. In fact, in
some cases such knowledge may be detrimental because it
disrupts individual efforts and may incur coordination
overhead, when such operations may be more profitably
deferred to later. y

SljPPORTlNG ASYNCHRONOUS COLLABORATION
The properties of tasks, work practice, and technology that
lend themselves to asynchronous interaction point to
infrastructure traits that can support applications for
asynchronous tasks.

Independence points to the need to “insulate” collaborators
from the actions of others-collaborators should be able to
operate with limited interference from or coordination with
others. In particular, they should be able to continue
working, regardless of the actions taken by coworkers,
Replication of data is often a useful means for achieving
independence of work. Replication can separate the actions
of users from their colleagues, providing performance, fault-
tolerance, and the ability to locally integrate changes before
releasing them to the world at large.

One of the strongest forms of independence is the ability to
work completely discoMected from the network and, by
implication, other users. The desire to support disconnected
use means that users must be able to view, update, and add to
their own private replicas of data even when they are not on
the network. This constraint requires us to support replicas
that are only weakly consistent with one another. If we
required strong consistency then all parties would have to be
connected at all times, and users would lose a degree of
independence from one another.

While eventual consistency of replicas is desirable, users
also need to control when information is shared with other
users. Applications such as word processing or software
development might require explicit control over information
propagation. For, example, in the case of collaborative
software development, users often wish to ensure that
updates are withheld until a complete; coherent, and stable
picture of the code is available.

Finally, since asynchronous interaction often relies on the
fact that collaboration can be achieved even in the face of
minimal coordination among users, support for automatic
resolution of * conflicts can help reduce the need for
coordination. If we can mechanically deal with conflicts, we
can relieve uses of the burden of ‘*by hand” coordination
about their shared artifacts. To be usable by a range of
applications, the conflict facilities must be able to implement
application-specific policies about how to deal with
conflicts. Succinctly, applications must be able to provide
their own semantics about how to resolve conflicts
automatically.

In the following section we describe a system called Bayou
that satisfies ,these requirements for supporting asynchronous
collaboration. ,- ’

120

BAYOU OVERVIEW
Bayou is a replicated, weakly consistent storage system
designed to support collaborative applications in distributed
computing environments with varying network connectivity
[22]. A typical example of such an environment is a system
with mobile hosts that may disconnect over periods of time,
connect only through low-bandwidth radio networks, or
connect occasionally with expensive cellular modems. Its
model for replication and weak consistency-allowing
disconnection of servers from the network-is designed to
support extreme scalability, up to “world wide” applications.
Bayou relies only on pair-wise communications between
computers, which allows the system to cope with arbitrary
network connectivity.

Bayou applications can read from and write to any available
replica without the need for explicit coordination with other
replicas. Every replica eventually receives updates from all
other replicas through a chain of pair-wise exchanges of
data. To handle the update conflicts that naturally arise in
such a weakly consistent system, Bayou allows applications
to specify how to detect and resolve these conflicts. In
addition, Bayou allows applications to select or specify a
number of other policies that control how and where read
and write operations get executed.

These characteristics make Bayou well suited for building
wide-area asynchronous collaborative systems.

The Bayou System Model
In Bayou, replication is managed by Bayou servers. Each
server holds a complete replica of the data. The data model
provided by the current implementation of Bayou is a
relational database, although other data models could be
used as well. We chose a relational model because of its
power and flexibility. In particular, it naturally supports fine
grained, structured access to the data, which is useful for the
application-specific conflict detection and resolution
mechanisms described below. Higher-level application-
defined data constructs can be created in terms of the data
model provided by the relational database.

As mentioned above, Bayou replicas are weakly consistent.
That is, at any point in time different servers may have seen
different sets of updates and therefore hold different data in
their databases. Weak consistency distinguishes Bayou from
many of the replicated systems designed in the CSCW
community [3][10]. Some collaborative and distributed
systems infrastructures use fairly strong forms of
consistency, usually based on pessimistic locking. That is,
before data can be modified it must be locked to ensure that
its access is serialized Such strongly-consistent schemes
ensure that applications always see a consistent picture of the
data. However, they do not support weakly-connected
applications, and do not scale to the global applications
envisioned by Bayou.

Much like Lotus Notes 1131, Bayou applications are free to
read and update replicas at will, without locking. Bayou
guarantees that the distributed storage system will move
toward eventual consistency by imposing a global order on

write operations and by providing propagation guarantees.
Each write carries enough information so that a Bayou server
can apply the writes it has received in the correct order
without coordinating with any other server.

Bayou’s Mechanisms for Application Semantics
One feature that distinguishes Bayou from previous
replicated storage systems including Ficus [12], Coda
[14][21], and Lotus Notes [13] is that applications can
impose their own semantics on the operations executed at a
replica. To this end, Bayou reads and writes are not the
simple operations supported by most databases. Instead they
include additional application-supplied information, which
ensures that applications will receive the required level of
service from the system.

Bayou’s mechanisms for supporting application semantics
fall into six categories:

l Application-defined conflict detection.

l Application-defined conflict resolution.

l Selection of session guarantees.

l Selection of committed or tentative data.

l Replica selection.

l Selectable anti-entropy (data propagation) policies.

Conflicf Defection and Resolution. The first two semantic
categories are provided tbrough the Bayou write operation,
and are designed to detect and resolve the conflicts that arise
in a weakly-consistent system. In Bayou, a write consists of
three components:

l Dependency Check

l UpdateSet

l Merge Procedure

The dependency check specifies a set of conditions that must
hold so that the up&e set can be applied to the replica’s
database. A dependency check consists of a query to be
performed at the database and the expected result of that
query. If the actual result matches the expected result, then
the update set in the write is applied to the database. The
update set consists of insertions, deletions, or modifications
of mples in a relation.

If the dependency check fails, an application-specific
conflict has been detected and the merge procedure is
executed. The mergeprocedure, or “mergeproc” in short, is a
fragment of code in a high-level interpreted mergeproc
language intended to generate an alternate update set to be
applied to the database. Mergeprocs support application-
detied conflict resolution, meaning that conflicts are
essentially handled through application code, even though
that code is executed by the Bayou ini?astrncture itself. We
shall see some examples of mergeprocs in our discussion of
applications.

Bayou’s use of mergeprocs differs from systems like Coda
[14][21] and Ficus [12], which also support application-

121

supplied conflict resolution, in that Bayou allows different
resolution procedures to be associated with each individual
write. Thus, Bayou provides applications with more fine-
grained control over conflict handling. Furthermore, because
the conflict resolution procedure propagates with the write it
is available at each server when needed.

The mechanisms for automated conflict detection and
resolution are important for supporting asynchronous
collaboration, because they eliminate situations where users
would otherwise be required to interact closely when faced
with data conflicts. Hence, Bayou allows users to act more
independently.

S.bssion Guarantees. The session guarantees mechanism is
used by an application to establish a required level of
consistency for its own operations. That is, while a set of
Bayou servers maintain data that is only weakly-consistent, a
running instance of an application can request that its view
of the world maintain a particular level of consistency.
Different applications may have different requirements for
their desired level of consistency, and Bayou supports a
range of applications needs through this mechanism.

A session is an abstraction for”a sequence of reads and writes
performed during the execution of the application, and
session guarantees are implemented by constraining the
replicas that may be selected by ‘the application during that
session.

Four session guarantees are supported by Bayou:

Read Your Writes ensures that the effects of any writes
made within a session are visible to later reads within that
session. In other words, reads are restricted to replicas of
the database that include all previous writes in the
session.

Monotonic Reads permits users to observe a database that
stays up-to-date over time. It ensures that reads are only
made to database replicas containing all writes whose
effects were seen by previous reads within the session.

Writes Follow Red ensures that traditional write/read
dependencies are preserved in the or&ring of writes at all
servers. That is, at every replica of the database, writes
made during the session are ordered after any writes
whose effects were seen by previous reads in the session.

Monbtonic Writes says that writes must follow previous
writes within the session. In other words, a write is only
incorporated into a replica’s database copy if the copy
includes all previous writes from that session, and the
write is ordered after these previous writes.

Session guarantees are described in more detail in [23], and
are not intended to ensure atom&y or serializability.
Instead, users of collaborative applications use session
guarantees to maintain a self-consistent view of the database,
even though they may read from and. write to various,
potentially inconsistent, replicas over time.

Stab/e vs. Tentative Data. Bayou provides a mechanism that
establishes when a write is stable it a given server. That is,

when no new writes will ever be received by the server that
will have to be ordered before that write. When a write
becomes stable at a server, its conflict detection and
resolution mechanisms will not be executed again, which
means that its final effect on the database is known. On the
other hand, a write that is not yet stable at a server is deemed
tentative. Tentative writes may need to be re-executed if
other writes with earlier writestamps are received by the
server, and thus have a possibly changing effect on the
database.

The distinction between tentative and stable data is
important from the application’s perspective. An application
c&i be designed with a notion of “confirmation” or
“commitment” that corresponds to Bayou’s notion of
stability. For example, color codes can be used in a graphical
user interface to indicate whether a displayed item is
tentative, that is, may change later because of conflict, or is
stable and will not change due to conflict.

Bayou also allows clients to choose whether they will read
from the database when tentative data has been applied, or
only from the view of the database that corresponds to
applying only stable writes. This ability allows clients to
trade data availability -‘for assurance of data stability-
applications that can tolerate data that has not fully stabilized
can read it immediately, without waiting for it to become
stable.

Although stability does not equate with consistency, when a
collaborative application reads only the results of stable
writes, its users will perceive a different “sense” of
consistency than if the application also reads tentative data.

Replica Selection. Another important feature that Bayou
provides to an application is the ability to select which
replica it will use for its operations. The ability to select from
several replicas over the life-span of an application is
particularly important to collaboration:

l A particular replica can be selected to optimize certain
communication requirements. In particular, autonomous
users with a disconnected laptop can run a server for a
local replica on that laptop. Applications can choose this
server, thus ensuring access to the database.

l Applications operating on behalf of different users on
different machines can be connected to the same replica,
which enables all the application instances connected to
that replica to see updates as soon as they occurs In
essence, the applications can work together in a tightly-
integrated, strongly-consistent, synchronized fashion.
The ability of applications to connect to a single replica,
and later split apart and communicate with different
replicas, can be used to support transitions between
synchronous and asynchronous styles of collaboration.

Anfi-entropy Policies. Anti-entropy is the pair-wise process
by which the servers of two replicas bring each other’s
databases up to date. During the anti-entropy process two
servers exchange the sets of writes known to one server but

I

122

not the other [4]. For a more detailed description of the
reconciliation protocol and its performance, refer to [20].

Although not fully implemented yet, the Bayou model
supports client-supplied anti-entropy policies. Thus, clients
can influence when to propagate their changes to the
database to other servers. (Currently, anti-entropy is
performed automatically at a set interval, or when manually
requested by an application.) The ability to regulate when
updates are propagated is important for applications like
collaborative software development where users must ensure
that a coherent picture of the code base is available at
specific times.

IMPLEMENTING COLLABORATIVE APPLICATIONS WITH
BAYOU
This section describes a range of collaborative applications
we have built, or are building, on top of the Bayou
infrastructure. Three of the applications below-a shared
bibliographic database, a group calendar system, and a
mobile electronic mail system-have been completed The
Bayou Project Coordinator system is still in the design stage.
The final “application” is actually a higher-level
collaborative toolkit This toolkit exists currently but does
not use Bayou. We are investigating porting the data storage
portion of the toolkit to use Bayou.

All of these applications share the following characteristics:
they are highly asynchronous, requiring few, or in some
cases no, synchronous updates from other users. They can
tolerate weakly-consistent data, and they can benefit from
mechanized conflict detection and resolution.

We describe each of these applications, examine how Bayou
benefits the applications, and how the applications have
informed our designs and goals for Bayou.

Collaborative Bibliographic Database
BibDB is a multi-user shared bibliographic database that
allows users to add and modify entries, and automatically
generates citation keys that are used to refer to those entries.
The system is conceptually similar to, but simpler than,
bibliographic database systems like RefDBMS [9]. BibDB is
perhaps an asynchronous application in its purest form: users
of the system never “see” other users of the application.
BibDB provides no awareness of others, even when several
people are using the application at the same time.

Consider a situation in which Alice and Bob maintain a
bibliographic database for their research project using
BibDB. Their style of interaction is extremely asynchronous:
even if Alice and Bob are updating the database at the same
time, they have no knowledge that the other is using the tool.
Further, the propagation and visibility of updates need not
occur immediately: in most cases, Bob does not need to
know immediately if Alice adds a new entry, although they
will eventually need to know about duplicate entries. In
other words, by its requirements, the system is tolerant of
weak consistency and does not require updates to be globally
visible immediately.

BibDB uses a simple algorithm to generate human-readable
citation keys: the key is a few letters of the author’s last
name with a postfix consisting of the last two digits of the
publication year appended, and possibly an extra character in
the case of multiple papers by the same author from the same
year. If two users add entries that would result in the same
citation key, the conflict detection aud resolution procedures
will change the updates to ensure that keys are always
unique.

This scenario is an example, albeit simple, of how the Bayou
system can incorporate application-specific integrity
constraints. “Application intelligence,” in the form of a
Bayou merge procedure, always ensures 1 semantically-
meaningful keys. Merge procedures are also used to detect
and merge duplicate entries in the database. Note that
conflicts can be resolved without the need for “manual” user
intervention or coordination among users because of the
mechanisms provided by Bayou.

Because of weak consistency and the fact that BibDB reads
tentative writes, users must be aware that tentative citation
keys may change until they become stable. So if a user refers
to a newly-added citation key in a paper, he or she must
check back once the update is stable to ensure that the key
has not changed. Users who are well-connected may opt to
only read stable data. But users can choose to view tentative
data to maximize data availability when connection is poor.

BibDB is an example of a highly asynchronous application
in which only loose artifact sharing is required. And, because
of automated conflict detection and resolution, no user-level
coordination is required In other words, the application is an
excellent match for Bayou.

Group Calendar
Like BibDB, Croup Calendar helps users manage a shared
resource, in this case, a shared calendar. One common usage
example is conference room scheduling. This task has the
following characteristics:

Users may expect conflicts since they are negotiating the
use of a shared resource.

Awareness of other users is not critical since scheduling
policies can be provided by the application.

The application data, that is, dates and times, are
structured, allowing the application to detect contlicts.

The task supports specifying alternative appointment
times for use when conflicts with other users occur.

As a typical scenario, imagine that Jane uses Croup Calendar
to schedule a meeting in the conference room from lo:30 am
to 11:30 am on Monday. She also specifies Wednesday at
the same time as an alternate. While working on the train,
Kevin schedules a project meeting in the conference room
from 10~00 am to 11:00 am on Monday. He also specifies
Monday from 12~00 pm to 1:OO pm as an alternate time.
When Kevin connects his laptop to the network, his
modifications propagate through the system. As the writes
are transmitted between the database replicas for the

123

BayouJrite(
update = {insert, Meetings, 12/18/95, lO:OOam, 6Omin, "Project Meeting: Kevin"),

I dependency-check = {
query = "SELECT key FROM Meetings WHERE day = 12/U/95

AND start -c ll:OOaq AND end > lO:OOam",
expected-result' = EMPTY}, '

mergeproc = {
alternates = {i2/18/95, 12:OOpm):
,newupdate = {},;
FOREACH a IN alternates {

check if there would be a conflict
IF (NOT EMPTY (

SELECT key FROM Meetings WHERE day = a.date
AND start -z a.time + 6Omin AND end > a.time))

CONTINUE;
no conflict, can schedule meeting at that time
neppdate = {insert, Meetings, a.date, a.time, 6Omin. "Project Meeting: Kevin*);
BREAK;

i
" IF (newupdate = {I) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, lO:OOam, 6Omin, "Project Meeting: Kevin*);
RETURN newupdate;}

)

FIGURE 1: A Bayou Write for Group Calendar

conference room calendar, a conflict is detected. Kevin later
receives a notification that due to a conflict, the conference
room has,been reserved at the alternate time he specified. ,

The Bayou write resulting from Kevin’s input is shownin
Figure 1. The write specifies that, given a conflict, if no
alternative reservation can be found, the update is written to
the error log. In the Croup Calendar interface, items in the
error log are accessible, enabling users to determine when
their reservation requests have been unsuccessful.

Like BibDB, users must decide whether they want to only
see stable writes to the calendar. Tentative writes can be
color-coded in the graphical interface as shown in Figure 2.

Croup Calendar typifies applications that can provide
policies to minimize multi-user coordination. Since the
experience of multiple people wanting to reserve the same
thing is common, users are familiar with the strategy of
providing alternate requests. The advantages of not having to
wait for the approval of other users, as well as being able to
work disconnected from the network, outweigh the cost of
unresolved conflicts.

Two planned modifications to Bayou will improve the
usability of Croup Calendar. First, strategies for server
selection and anti-entropy will help ensure that tentative
writes stabilize quickly. Second, notification facilities for
failed requests will remove the need for users to confirm
their reservations.

FIGURE 2: The Group Calendar Application

Moblle Electronic Mail
Electronic mail is often considered to be the “classical”
asynchronous collaborative application. Even so, electronic
mail has very different characteristics than the other
applications examined here. Perhaps most importantly, there
is very little shared state among participants, in the sense that
when a message is “shared” with a collaborator, a’copy of it
is sent. There is typically no one single copy of a message
that is simultaneously shared among collaborators.

But, even though messages are copied among collaborators
using traditional (and existing) mail routing facilities, the
state of a particular user’s mail folders can profitably be
stored and shared in Bayou. Thus, we have implemented a
mail user agent called BKMH on top of the EKIvlH mailer.
BKh4H supports “mobile” access to electronic mail-a user
can have access to his or her particular mail folders and
messages, whether at a desktop machine in the office, a
computer at home, or a laptop that is disconnected from the
network. Even though replicas of the data are stored across
multiple servers, changes made to any copy of the mail
database will eventually be propagated to all other copies.

124

BXMH is implemented by replacing the file handling layer
of EXMH with an interface to the Bayou relational database.
Messages and mail folders are represented as sets of tuples
stored in relations in the database.

A BXMH user will typically rnn a Bayou server-containing
his or her mail-on each machine where mail will be read.
Any machine with a Bayou server running on it can then be
disconnected from the network. So, for example, a laptop
machine running a Bayou server can be taken “on the road.”
The user of this machine will still have access to all of his or
her email. Further, changes can be made to the mail database
while disconnected-filing messages, changing folder
hierarchies, renaming folders, and so on. Later, when the
machine is reconnected to other Bayou servers, the states of
the mail database maintained at each server will be recti&d.
The Bayou anti-entropy protocols cause all servers to move
toward a consistent state, and changes made while
disconnected are propagated to the office and home
machines. Note also, that the anti-entropy protocols can be
run across low-bandwidth connections, including dial-in
modems, infrared or simply by exchange of floppy disks.

Inconsistencies can arise when a changes are made at
multiple servers. One common example is when mail is
automatically incorporated on a desktop machine. This new
information must be merged with changes made by a user on
a laptop. Conflicts can also arise when a user makes
inconsistent changes on both a laptop and an office machine,
perhaps filing a given message into two different folders at
each machine.

Mergeprocs come into play to resolve inconsistencies that
may arise between the two mail databases when updates are
propagated between them. In BKMH, mergeprocs are used
to “push” mail application semantics into the Bayou system.

BXMH defines a suite of mergeprocs that enforce particular
policies about how the system should behave when certain
inconsistencies arise. Common inconsistencies include
situations such as when the user renames a folder on one
machine but continues to file messages under the old name
on another; the user deletes a folder on one machine while
fting messages to it on another; the user disposes of one
messages in different ways on different machines, and so on.

Rather than enumerating all possible choices to the user,
BXMH provides a conflict policy UI that allows users to
provide high-level guidelines about how to resolve conflicts.
This interface allows users to favor one interpretation of an
inconsistency over another. Conflict resolutions are recorded
in a special mail folder in case the user wishes to know the
details of what has transpired. Figure 3 shows a screenshot
of the BKMH conflict configuration interface.

Bayou Project Coordinator (BPC)
The Bayou project is a complex, multi-person effort
requiring the management of many shared artifacts. Some of
these artifacts are: the Bayou server binaries, various
application databases and their replicas, laptops and
modems, and per-application security certificates for users.
We are currently designing the Bayou Project Coordinator to

FIGURE 3: The BXMH Conflict Configuration
Interface

support the management of these resources. This application
has two primary functions. First, it maintains dependencies
between artifacts. For example, the system copies binaries
for servers and client applications to new laptops. Second, it
provides awareness of the activities of group members.
Since a majority of tasks involve project artifacts, a
representation of the activities of project members is culled
from artifact use.

This application exercises Bayou’s conflict detection and
resolution facilities in three ways. First, consistency among
project artifacts is maintained without user intervention. For
example, development platforms are kept up-to-date by
distributing updated server kernels to Bayou machines
Second, Bayou supports asynchronous interaction when user
intervention is required. For example, when a new Bayou
user is added, owners of specific applications
asynchronously approve the creation of security certificates
for the new user. Third, user interaction with Bayou servers
triggers logging of user activity. By creating a dependency
check that will always fail, the mergeproc will always be
evaluated and can specify what activity information to
record. The Bayou Project Coordinator can then use this
information to summarize the activities of project members.

Consider the following scenario. Mike has been working for
the past week on modifications to the Bayou server kernel.
When he “checks in” changes that are ready for use by the
other Bayou members, the modified kernel is propagated to
their machines. During this time, Keith has introduced a new
application and approved a set of users for this application.
The BPC distributes copies of the application binary and
security certificates to the set of approved users.

125

At the same time, Marvin has been traveling with a
disconnected Bayou machine. When he reconnects his
machine to the network, the results of Mike and Keith’s
work are transmitted to his machine. Observing performance
differences in the behavior of the Bayou server, Marvin
investigates the activity representations for group members
in BPC. Noticing that Mike has spent the week working on
the server, he is no longer surprised by the changes in server
performance. Marvin also notices that Keith has introduced a
new application. He decides to experiment with using the
application while writing an email message to Keith with his
initial impression.

BPC supports strong artifact sharing without requiring
explicit coordination among users. Specifications about
dependencies between project artifacts help maintain the
integrity of the system including the propagation of new
project artifacts. Given the complexity of the Bayou project,
without the use of the BPC, project members need to
constantly “baby-sit” the state of the project.

BPC also demonstrates using mergeprocs to trigger
exploration of the shared data. In this case, the application
summarizes changes to the data to provide awareness of the
activities of project members. The same strategy could be
used to trigger self-modifying data such as a word processor
that automatically corrects spelling mistakes.

Tlmewarp
The Timewarp system is not an application, but rather
another toolkit for building collaborative applications [6]. It
is a “higher level” toolkit than Bayou, in the sense that it
provides more functionality specifically designed to support
collaboration. Timewarp provides mechanisms for
awareness, coordination, multi-user access to data, and
versioning.

The basic paradigm that Timewarp follows is that the history
of a shared artifact is allowed -to be divergent-that is,
collaborators at multiple sites may “see” different versions
of the artifact at any given time. Collaborators may work on
these versions independently, perhaps reconciling them into
one result periodically throughout a collaboration. The
history of the artifact itself becomes a shared artifact that can
be used to mediate the collaboration. So participants can
“travel” through the parallel timelines of an artifact and
make changes 65 the artifact at any point in its history.

The current Timewarp implementation uses a single
centralized server to coordinate client applications that run at
each collaborator’s machine. We are investigating the use of
Bayou as lower level infrastructure which would give us
greater levels of independence, including the ability to
disconnect from the network, that this style of collaboration
,favors.

Timewarp is implemented using Java and its Remote
Method Invocation @Ml) system. We have created a Java-
language interface to the client-side Bayou AI%. Porting
Timewarp to use Bayou involves recoding the data structures
used internally as tuples suitable for storage in a relational
database.

The conflict management system used by Timewarp will
have to be extended to. take advantage of the disconnected
operation permitted by Bayou. Currently in Timewarp,
conflicts are brought to the attention of the user and
(potentially) resolved as soon as they occur. Consequently,
conflicts never “appear” in a timeline in which the user is not
active. In a Bayou reimplementation of Timewarp, a given
timeline will not be assured of being conflict-free until all of
the data associated with it is committed. If a timeline
depends on state that is still tentative, updates may still be
received that will cause new Timewarp-level conflicts to
occur. Mergeprocs will be used to integrate updates into
timelines; this code will essentially translate Bayou
database-level conflicts into Timewarp-level conflicts, and
notify the Timewarp infrastrncture that new conflicts exist
and must be dealt with.

We believe that the facilities offered by these two toolkits-
“high-level” versioning, awareness, and coordination by
Timewarp, and true distribution, weak consistency, and
disconnected use by Bayou-will complement each other
when the two’are combined.

SUMMARY AND PROJECT STATUS
Asynchronous collaborative systems present a number of
challenging problems, from both the human design
perspective and the technological perspective, This paper
has investigated a number of the characteristics of
asynchronous work, and the design challenges that must be
addressed whekbuilding infrastructure for this space.

Asynchrony often arises wherrYwhether through group
work practices, technology, or simply the nature of the tasks
at hand--collaborators need to work independently from one
another. The human dynamics of asynchronous work have
implications for designers of infrastructure and applications
for asynchronous collaboration.

We have”prese&d a system called Bayou that addresses
many of these issues. Bayou has features that support both
users and writers of asynchronous applications. Below we
summarize some of the features of Bayou we feel are
important for builders and users of asynchronous
applications.

l Efficient anywhere/anytime access to hata.

Bayou supports weakly-consistent replication. Servers
synchronize in a pair-wise fashion, supporting a range of
work practices. For example, home and office machines
can be synchronized through a laptop transported
between locations; the home and office machines need
never communicate directly with each other.

This feature is used by BKMH to handle reading mail
from any location, using exactly the same user interface
even when disconnected. BibDB uses this feature for
separation to support what is an intrinsically independent
task.

126

l Automatic management of conflicts.

Dependency checks and mergeprocs provide a way for
applications to not only define for themselves what
constitutes a conflict, but also to establish the procedures
to take to resolve conflicts that occur. Thus, Bayou
applications can often resolve most col&cts
automatically, reducing the need for user intervention and
coordination, and enhancing independence.

All of the cnrrent Bayou applications use this feature, and
most provide multiple resolution options to their users.
BXMH allows users to set general conflict resolution
policies. The group calendar lets users specify fallback
times for calendars that will be used in the event of a

conflict.

l YSeIf consistency” and awareness of data status.

Session guarantees further support seamless transitions
between servers. Clients can choose to see only the
progression of activity, and not move back and forth
between older and newer states. All of our example
applications use this facility.

Also, Bayou provides a means for applications to detect
the status of dam in a databass-whether it is tentative or
committed. This information can be presented to the user
in a number of forms. In the group calendar, color is used
to mark which entries will no longer change. In BXMH,
the interface highlights which messages are in conflict
and need attention from users.

One weakness is that the current implementation does not
notify applications (and hence users) when data
changes-applications must poll the database to detect
changes.

l Flexible data model.

Bayou provides a robust and flexible data model for
applications. The system supports any granularity of
shared data. So writers can modify a field of a triple (such
as the time in a calendar entry), or entire sets of tnples
(such as new versions of source code or mail folders) at
once.

While the relational data model may not be a “natural” fit
for all applications, the model can be generalized for
storages of other types of structured data fairly easily.

l Fluid transition between synchronous and
asynchronous modes of operations.

Multiple collaborators can connect to distinct servers for
typical asynchronous operation, or connect to the same
server for “tighter” synchronous operation,

Users of the group calendar application typically connect
to a centralized Bayou server to quickly share operations
entered while at the office, therefore diminishing the
opportunity for conflicts. But users can connect to local
servers when disconnected, and still access and modify
their calendars.

We have presented a number of asynchronous collaborative
applications built or designed using the Bayou infrastructnre
that use these features. These applications span a range of
interaction styles, both in terms of the amount of artifact
sharing and the amount of coordination support they provide
to their users.

The Bayou architecture outlined in this paper has been
implemented and runs on Sun SPARCstations running
SunOS 4 and 5, and on 486based subnotebooks running
Linux. The query language used in read operations and
dependency checks is a subset of SQL. The mergeproc
language is based on the Tool Command Language, TCL
[19], augmented by SQL.

FUTURE RESEARCH
We expect that further exploration of the design of
applications that transition between synchronous and
asynchronous modes of operation will raise interesting
questions, from both the interface and infrastructure
perspectives. One key requirement for supporting
synchronous applications is the ability for applications to
request notifications when data at a server changes. In the
current implementation, clients must poll the server to
receive notification of changes, which makes the
construction of synchronous applications difticult.

Issues we are planning to explore further in the context of
the Bayou infiastructnre include partial replication, policies
for choosing servers for anti-entropy, server selection
policies by applications, and fine grain access control.

Our most immediate design focus is on supporting ‘partial
replicas that contain subsets of a database. Partial replication
is important for applications that run on laptops or PDAs,
and raises a number of difficult problems ranging from
characterizing a partial replica to resolving conflicts in a
consistent manner across partial replicas.

We are currently examining the design issues surrounding
porting the entire Bayou system to Java to enhance
portability and easeof-integration with applications. Such a
system would most probably operate as a “replication layer”
on top of an existing relational database management
system.

We are also experimenting with wireless connectivity for
servers and clients running on a laptop using the Metricom
[16] wide-area radio network and point-to-point infra-red
connections between laptops.

ACKNOWLEDGEMENTS
The design and development of Bayou have been a multi-
year effort involving a number of people. Alan Demers, Carl
Hauser and Brent Welch were invaluable participants in
earlier stages of the Bayou design process. Mark Weiser,
Craig Mudge, and John White, as managers of the Computer
Science Lab, have been supportive throughout.

127

‘PI

c31

[41

[51

PI

171

PI

PI

WI

t’ll]

Baecker, R.M., Nastos, D., Posner, I.R., Mawby, K.L.,
“The User-centered Iterative Design of Collaborative
Writing Software!’ Proceedings of the Conference on
Human Factors in Computing Systems. Amsterdam, The
Netherlands: ACM. 1993. pp. 399-405.
Bly, S.A., Harrison, S.R., and Irwin, S., “Media Spaces:
Bringing People Together in a Video, Audio, and Com-
puting Environment.” Communications of the ACM, Vol.
36, No. 1 (January 1993), pp. 28-47.
Conklin, J., and Begeman, M.L. “gIBIS: A Hypertext
Tool for Exploratory Policy Discussion.” Proceedings of
the Conference on Computer-Supported Cooperative
Wark (CSCW), Portland, OR: ACM, 1988, pp. 140-152.
Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J.
Shenker, S., Sturgis, H., Swinehart, D., and Terry, D.
“Epidemic Algorithms for Replicated Database Mainte-
nance,” Proceedings of the Sixth Symposium on Ptinci-
ples,of Distributed Computing, Vancouver, BC, Canada,
August 1987, pp. l-12.
Dour&h, P., and Bly, S., “Supporting Awareness. in a
Distributed Workgroup.” Proceedings of ihe ACM Con-
ference on Human Factors in Computing Systems
(CHI’92), Monterey, CA: ACM, pp. 541-547,
Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
niques for Autonomous Collaboration.” Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI’97), Atlanta, GA: ACM, pp. 218-225.
Evelaiui, J.D., and B&son, T.K., ‘Work Group Struc-
tures and Computer Support: A Field Experiment” Pro-
ceedings, ACM Conference on Computer-Supported
Cooperative Work, Portland, OR: ACM, 1988.
Galegher, J., and Kraut, R.E., ‘Computer-Mediated
Communication for Intellectual Teamwork: A Field
Experiment in Group Writing.” In Proceedings of the
ACM Conference on Computer-Supported Cooperative
Work, Los Angeles, CA: ACM, 1990, pp. 65-78.
Golding, R, Long, D., and Wilkes, J. “The RefDBMS
Distributed Bibliographic Database System.” Proceed-
ings of Venter DSENZX Conference, Sti Francisco, CA,
January 1994, pp. 47-62.
Greenberg, S., and Marwood, D., “Real Time Group
ware as a Distributed System: Concurrency Control and
its Effect on the Interface.” Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
Chapel Hill, NC: Aw O&2226,1994. pp. 207-217.
Grief, I., and S&in, S. ‘,‘Dam Sharing in Group Work,’
ComputerSupported Cooperative Work: A Book of
Readings,~ Irene Grief, ed. San Mateo, CA: Morgan
Kaufinq 1988, pp. 477-508.

WI

b31
<;i

II141

I251

f31
Cl71

.

WI

WI

PO1

ml

~231

Heidemamr, J.S., Page, T.W, Guy, R.G., andPopek, GJ.
‘Primarily Disconnected Operation: Experiences with
Ficus,” Proceedings of Second Workshop on the Man-
agement of Replicated Data, Monterey, CA, Nov, 1992,
Kalwell, L. Jr., Beckhardt, S., Halvorsen, T., Ozzie, R.,
and Greif, I., “Replicated Document Management in a
Group ‘Communication System!’ Proceedings’ of the
ACM Conference on Computer-Supported Cooperative
Work Portland, Oregon, September 1988.
Kistler, JJ., and Satyanarayanan. “Disconnected Opera-
tion in me Coda File System.” ACM lkansactlons on
Computer Systems 10(1):3-25, February 1992.
McGuffin, Lola, and Olson, Gary, “ShrEdit: A Shared
Electronic Workspace,” CSMIL Technical Report, Cog-
nitive Science. and Machine Intelligence Laboratory,
University of Michigan, 1992.
Metricom Inc. http://www.metricomcom.
Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Mor-
ris, J. “Issues in the Design of Computer Support for
Co-authoring and, Commenting!’ Proceedings of the
Conference on Computer-Supported Cooperative Work,
Los Angeles, CA: ACM, 1990, pp. 183-195.
Olson, J., Olson, G. Storrprsten, M., and Carter, M.,
‘How a Group Editor Changes the Character of A
Design Meeting as Well as its Outcome.” Proceedings
of the Conference on Computer-Supported Cooperative
Work, Toronto, Ontario: ACM, 1992, pp. 91-98.
Ousterhout, J., “Tel: An Embeddable Command Lan-
guage.” Proceedings of the USEh?lX Conference, Winter
1990.
Petersen, K., Spreitzer, MJ., Terry, DB., Theimer,
MM., Demers, AJ. “Flexible Update Propagation for
Weakly Consistent Replication.” Proceedings of the Six-
teenth ACMSymposium on Operating System Principles
(SOSP), Saint-Malo, France, October 1997.
Satyanarayanan, M., Kistler, JJ., Kumar, P., Okasaki,
ME., Siegel, E.H., and Steere, DC., “Coda: A Highly-
Available File System for a Distributed Workstation
Environment.” IEEE Transactions on Computers 39(4):
447-459, April 1990.
Terry, DB., The&r, M&I., Petersen, K,, Demers,
AJ., Spreitzer, M.J., Hauser, C.H. ‘Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System.” Proceedings fifleenth ACM Sympo-
sium on Operating Systems Principles (SOSP), Cooper
Mountain, Colorado, December 1995, pp. 172-183.
Terry, D.B., Demers, AJ., Petersen, K., Spreitzer, MJ.,
Theimer, MM., and Welch, B. “Session Guarantees for
Weakly Consistent Replicated Data!’ Proceedings of the
International Conference on Parallel and Distrlbuted
Information Systems (PDIS), Austin, Texas, September
1994, pp. 140-149.

128

